Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The structure of some equivariant Thom spectra


Author: Steven R. Costenoble
Journal: Trans. Amer. Math. Soc. 315 (1989), 231-254
MSC: Primary 57R85; Secondary 55P42
DOI: https://doi.org/10.1090/S0002-9947-1989-0958887-X
MathSciNet review: 958887
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the equivariant Thom spectra $ M{O_{{{\text{Z}}_2}}}$ and $ m{O_{{{\text{Z}}_2}}}$ do not split as wedges of equivariant Eilenberg-Mac Lane spectra, as they do nonequivariantly. This is done by finding two-stage Postnikov towers giving these spectra, and determining the nontrivial $ k$-invariants. We also consider the question: In what sense is the spectrum $ m{O_{{{\text{Z}}_2}}}$ representing unoriented bordism unique?


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Prerequisites (on equivariant theory) for Carlsson's lecture, Algebraic Topology, Aarhus 1982, Proceedings, Lecture Notes in Math., vol. 1051, Springer-Verlag, 1984, pp. 483-532. MR 764596 (86f:57037)
  • [2] J. C. Alexander, The bordism ring of manifolds with involution, Proc. Amer. Math. Soc. 31 (1972), 536-542. MR 0290379 (44:7563)
  • [3] J. M. Boardman, Cobordism of involutions revisited, Proc. 2nd Conf. on Comp. Transfer Groups, Part I, Lecture Notes in Math., vol. 298, Springer-Verlag, 1972, pp. 131-151. MR 0358822 (50:11281)
  • [4] S. R. Costenoble, Equivariant cobordism and $ K$-theory, Ph. D. Thesis, Univ. of Chicago, 1985.
  • [5] -, The equivariant Conner-Floyd isomorphism, Trans. Amer. Math. Soc. 304 (1987), 801-818. MR 911096 (88h:57033)
  • [6] -, Unoriented bordism for odd-order groups, Topology Appl. 28 (1988), 277-287. MR 931528 (89a:57048)
  • [7] T. tom Dieck, Bordism of $ G$-manifolds and integrality theorems, Topology 9 (1970), 345-358. MR 0266241 (42:1148)
  • [8] H. Hauschild, Äquivariante Transversalität und äquivariante Bordismentheorien, Arch. Math. 26 (1975), 536-546. MR 0402787 (53:6601)
  • [9] L. G. Lewis, J. P. May and J. E. McClure, Ordinary $ RO(G)$-graded cohomology, Bull. Amer. Math. Soc. 4 (1981), 208-212. MR 598689 (82e:55008)
  • [10] L. G. Lewis, J. P. May and M. Steinberger, Equivariant stable homotopy theory, Lecture Notes in Math., vol. 1213, Springer-Verlag, 1986. MR 866482 (88e:55002)
  • [11] J. P. May and J. E. McClure, A reduction of the Segal conjecture, Current Trends in Algebraic Topology, Canad. Math. Soc. Conf. Proc., vol. 2, Part 2, Amer. Math. Soc., Providence, R. I., 1981, pp. 209-222. MR 686147 (84d:55007b)
  • [12] R. E. Stong, Notes on cobordism theory, Princeton Univ. Press, 1968. MR 0248858 (40:2108)
  • [13] S. Waner, Equivariant $ RO(G)$-graded bordism theories, Topology Appl. 17 (1984), 1-26. MR 730020 (85e:57042)
  • [14] A. G. Wassermann, Equivariant differential topology, Topology 8 (1969), 127-150. MR 0250324 (40:3563)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R85, 55P42

Retrieve articles in all journals with MSC: 57R85, 55P42


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0958887-X
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society