Higher-order Sugawara operators for affine Lie algebras

Authors:
Roe Goodman and Nolan R. Wallach

Journal:
Trans. Amer. Math. Soc. **315** (1989), 1-55

MSC:
Primary 17B67; Secondary 15A72, 20G45

MathSciNet review:
958893

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the affine Lie algebra associated to a simple Lie algebra . Representations of are described by current fields on the circle and . In this paper a linear map from the symmetric algebra to (formal) operator fields on a suitable category of modules is constructed. The operator fields corresponding to -invariant elements of are called Sugawara fields. It is proved that they satisfy commutation relations of the form

**[C-I]**Vyjayanthi Chari and S. Ilangovan,*On the Harish-Chandra homomorphism for infinite-dimensional Lie algebras*, J. Algebra**90**(1984), no. 2, 476–490. MR**760024**, 10.1016/0021-8693(84)90185-6**[C-G-J]**S. Coleman, D. Gross, and R. Jackiw,*Fermion avatars of the Sugawara model*, Phys. Rev.**180**(1969), 1359-1366.**[Fre]**I. B. Frenkel,*Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory*, J. Funct. Anal.**44**(1981), no. 3, 259–327. MR**643037**, 10.1016/0022-1236(81)90012-4**[G-O]**Peter Goddard and David Olive,*Kac-Moody and Virasoro algebras in relation to quantum physics*, Internat. J. Modern Phys. A**1**(1986), no. 2, 303–414. MR**864165**, 10.1142/S0217751X86000149**[Goo]**Roe W. Goodman,*Nilpotent Lie groups: structure and applications to analysis*, Lecture Notes in Mathematics, Vol. 562, Springer-Verlag, Berlin-New York, 1976. MR**0442149****[G-W1]**Roe Goodman and Nolan R. Wallach,*Whittaker vectors and conical vectors*, J. Funct. Anal.**39**(1980), no. 2, 199–279. MR**597811**, 10.1016/0022-1236(80)90013-0**[G-W2]**Roe Goodman and Nolan R. Wallach,*Classical and quantum-mechanical systems of Toda lattice type. I*, Comm. Math. Phys.**83**(1982), no. 3, 355–386. MR**649809****[G-W3]**Roe Goodman and Nolan R. Wallach,*Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle*, J. Reine Angew. Math.**347**(1984), 69–133. MR**733047**, 10.1515/crll.1984.347.69**[G-W4]**Roe Goodman and Nolan R. Wallach,*Classical and quantum mechanical systems of Toda-lattice type. III. Joint eigenfunctions of the quantized systems*, Comm. Math. Phys.**105**(1986), no. 3, 473–509. MR**848652****[Har]**Harish-Chandra,*Differential operators on a semisimple Lie algebra*, Amer. J. Math.**79**(1957), 87–120. MR**0084104****[Kac]**Victor G. Kac,*Laplace operators of infinite-dimensional Lie algebras and theta functions*, Proc. Nat. Acad. Sci. U.S.A.**81**(1984), no. 2, Phys. Sci., 645–647. MR**735060**, 10.1073/pnas.81.2.645**[Kos]**Bertram Kostant,*On Whittaker vectors and representation theory*, Invent. Math.**48**(1978), no. 2, 101–184. MR**507800**, 10.1007/BF01390249**[K-K]**V. G. Kac and D. A. Kazhdan,*Structure of representations with highest weight of infinite-dimensional Lie algebras*, Adv. in Math.**34**(1979), no. 1, 97–108. MR**547842**, 10.1016/0001-8708(79)90066-5**[L-W]**James Lepowsky and Robert Lee Wilson,*The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities*, Invent. Math.**77**(1984), no. 2, 199–290. MR**752821**, 10.1007/BF01388447**[Mur]**Francis D. Murnaghan,*The theory of group representations*, Dover Publications, Inc., New York, 1963. MR**0175982****[P-S]**Andrew Pressley and Graeme Segal,*Loop groups*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR**900587****[Sug]**H. Sugawara,*A field theory of currents*, Phys. Rev.**170**(1968), 1659-1662.**[Wal]**Nolan R. Wallach,*A class of nonstandard modules for affine Lie algebras*, Math. Z.**196**(1987), no. 3, 303–313. MR**913657**, 10.1007/BF01200353**[Wey]**Hermann Weyl,*The classical groups*, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR**1488158**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
17B67,
15A72,
20G45

Retrieve articles in all journals with MSC: 17B67, 15A72, 20G45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1989-0958893-5

Article copyright:
© Copyright 1989
American Mathematical Society