Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Higher-order Sugawara operators for affine Lie algebras


Authors: Roe Goodman and Nolan R. Wallach
Journal: Trans. Amer. Math. Soc. 315 (1989), 1-55
MSC: Primary 17B67; Secondary 15A72, 20G45
DOI: https://doi.org/10.1090/S0002-9947-1989-0958893-5
MathSciNet review: 958893
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \hat{\mathfrak{g}}$ be the affine Lie algebra associated to a simple Lie algebra $ \mathfrak{g}$. Representations of $ \hat{\mathfrak{g}}$ are described by current fields $ X(\zeta)$ on the circle $ {\mathbf{T}}\;(X \in \mathfrak{g}$ and $ \zeta \in {\mathbf{T}})$. In this paper a linear map $ \sigma $ from the symmetric algebra $ S(\mathfrak{g})$ to (formal) operator fields on a suitable category of $ \hat{\mathfrak{g}}$ modules is constructed. The operator fields corresponding to $ \mathfrak{g}$-invariant elements of $ S(\mathfrak{g})$ are called Sugawara fields. It is proved that they satisfy commutation relations of the form $ (\ast)$

$\displaystyle [\sigma (u)(\zeta),X(\eta)] = {c_\infty }D\delta (\zeta /\eta)\sigma ({\nabla _X}u)(\zeta) + {\text{higher-order}}\;{\text{terms}}$

with the current fields, where $ {c_\infty }$ is a renormalization of the central element in $ \hat{\mathfrak{g}}$ and $ D\delta $ is the derivative of the Dirac delta function. The higher-order terms in $ (\ast)$ are studied using results from invariant theory and finite-dimensional representation theory of $ \mathfrak{g}$. For suitably normalized invariants $ u$ of degree $ 4$ or less, these terms are shown to be zero. This vanishing is also proved for $ \mathfrak{g} = {\text{sl}}(n,{\mathbf{C}})$ and $ u$ running over a particular choice of generators for the symmetric invariants. The Sugawara fields defined by such invariants commute with the current fields whenever $ {c_\infty }$ is represented by zero. This property is used to obtain the commuting ring, composition series, and character formulas for a class of highest-weight modules for $ \hat{\mathfrak{g}}$.

References [Enhancements On Off] (What's this?)

  • [C-I] V. Chari and S. Ilangovan, On the Harish-Chandra homomorphism for infinite-dimensional Lie algebras, J. Algebra 90 (1984), 476-490. MR 760024 (85m:17007)
  • [C-G-J] S. Coleman, D. Gross, and R. Jackiw, Fermion avatars of the Sugawara model, Phys. Rev. 180 (1969), 1359-1366.
  • [Fre] I. B. Frenkel, Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory, J. Funct. Anal. 44 (1981), 259-327. MR 643037 (83b:17012)
  • [G-O] P. Goddard and D. Olive, Kac-Moody and Virasoro algebras in relation to quantum physics, Internat. J. Mod. Phys. A 1 (1986), 303-414. MR 864165 (87m:17027)
  • [Goo] R. Goodman, Nilpotent Lie groups: structure and applications to analysis, Lecture Notes in Math., vol. 562, Springer-Verlag, Berlin, 1976. MR 0442149 (56:537)
  • [G-W1] R. Goodman and N. R. Wallach, Whittaker vectors and conical vectors, J. Funct. Anal. 39 (1980), 199-279. MR 597811 (82i:22018)
  • [G-W2] -, Classical and quantum-mechanical systems of Toda lattice type. I, Comm. Math. Phys. 83 (1982), 355-386. MR 649809 (84e:58031)
  • [G-W3] -, Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle, J. Reine Angew. Math. 347 (1984), 69-133; erratum, 352, 220. MR 733047 (86g:22024a)
  • [G-W4] -, Classical and quantum-mechanical systems of Toda lattice type. III. Comm. Math. Phys. 105 (1986), 473-509. MR 848652 (88d:58035)
  • [Har] Harish-Chandra, Differential operators on a semi-simple Lie algebra, Amer. J. Math. 79 (1957), 87-120. MR 0084104 (18:809d)
  • [Kac] V. Kac, Laplace operators of infinite-dimensional Lie algebras and theta functions, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), 645-647. MR 735060 (85j:17025)
  • [Kos] B. Kostant, Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101-184. MR 507800 (80b:22020)
  • [K-K] V. Kac and D. A. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebra, Adv. in Math. 34 (1979), 97-108. MR 547842 (81d:17004)
  • [L-W] J. Lepowsky and R. L. Wilson, The structure of standard modules, I: universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), 199-290. MR 752821 (85m:17008)
  • [Mur] F. D. Murnaghan, The theory of group representations, Dover, New York, 1963. MR 0175982 (31:258)
  • [P-S] A. Pressley and G. Segal, Loop groups, Oxford Univ. Press, New York, 1986. MR 900587 (88i:22049)
  • [Sug] H. Sugawara, A field theory of currents, Phys. Rev. 170 (1968), 1659-1662.
  • [Wal] N. R. Wallach, A class of non-standard modules for affine Lie algebras, Math. Z. 196 (1987), 303-313. MR 913657 (89c:17035)
  • [Wey] H. Weyl, The classical groups, Princeton Univ. Press, Princeton, N.J., 1946. MR 1488158 (98k:01049)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B67, 15A72, 20G45

Retrieve articles in all journals with MSC: 17B67, 15A72, 20G45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0958893-5
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society