Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Functional equations, tempered distributions and Fourier transforms


Author: John A. Baker
Journal: Trans. Amer. Math. Soc. 315 (1989), 57-68
MSC: Primary 39B40; Secondary 42A38, 46F10
DOI: https://doi.org/10.1090/S0002-9947-1989-0979965-5
MathSciNet review: 979965
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper introduces a method for solving functional equations based on the Fourier transform of tempered distributions.


References [Enhancements On Off] (What's this?)

  • [1] J. Aczél, Lectures on functional equations and their applications, Academic Press, New York and London, 1966. MR 0208210 (34:8020)
  • [2] J. Aczél, H. Haruki, M. A. McKiernan and G. N. Sakovič, General and regular solutions of functional equations characterizing harmonic polynomials, Aequationes Math. 7 (1968), 37-53. MR 0279471 (43:5193)
  • [3] D. L. Bentley and K. L. Cooke, Linear algebra with differential equations, Holt, Rinehart and Winston, New York, 1973. MR 0354706 (50:7183)
  • [4] D. Ž. Djokovič, A representation theorem for $ ({X_1} - 1)({X_2} - 1) \cdots ({X_n} - 1)$ and its applications, Ann. Polon. Math. 22 (1969), 189-198. MR 0265798 (42:707)
  • [5] I. Fenyö, Über eine Lösungsmethode gewisser Funktionalgleichungen, Acta Math. Acad. Sci. Hungar. 7 (1956), 383-396. MR 0086261 (19:152a)
  • [6] Lars Hörmander, The analysis of linear partial differential operators. I, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo, 1983. MR 717035 (85g:35002a)
  • [7] J. H. B. Kemperman, A general functional equation, Trans. Amer. Math. Soc. 86 (1957), 28-56. MR 0094610 (20:1123)
  • [8] Marek Kuczma, Functional equations in a single variable, Monogr. Math. 46, PWN, Warsaw, 1968. MR 0228862 (37:4441)
  • [9] S. Kurepa, On the quadratic functional, Acad. Serbe Sci. Publ. Inst. Math. 13 (1959), 58-72. MR 0131187 (24:A1040)
  • [10] S. Mazur and W. Orlicz, Grundlegende Eigenschaften der polynomischen Operation, Studia Math. 5 (1934), 50-68 and 179-189. MR 0029472 (10:611a)
  • [11] Walter Rudin, Functional analysis, McGraw-Hill, New York, 1973. MR 0365062 (51:1315)
  • [12] H. Światak, On the regularity of the distributional and continuous solutions of the functional equations $ \sum\nolimits_{i = 1}^k {{a_i}(x,t)f(x + {\phi _i}(t)) = b(x,t)} $, Aequationes Math. 1 (1968), 6-19. MR 0279474 (43:5196)
  • [13] L. Székelyhidi, Almost periodicity and functional equations, Aequationes Math. 26 (1983), 163-175. MR 753528 (85h:39003)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 39B40, 42A38, 46F10

Retrieve articles in all journals with MSC: 39B40, 42A38, 46F10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0979965-5
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society