Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Infima of convex functions


Author: Gerald Beer
Journal: Trans. Amer. Math. Soc. 315 (1989), 849-859
MSC: Primary 90C25; Secondary 26B25, 49A50, 54C08, 90C48
DOI: https://doi.org/10.1090/S0002-9947-1989-0953536-9
MathSciNet review: 953536
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Gamma (X)$ be the lower semicontinuous, proper, convex functions on a real normed linear space $ X$. We produce a simple description of what is, essentially, the weakest topology on $ \Gamma (X)$ such that the value functional $ f \to \inf f$ is continuous on $ \Gamma (X)$. When $ X$ is reflexive, convergence of a sequence in this topology is equivalent to Mosco plus pointwise convergence of the corresponding sequence of conjugate convex functions.


References [Enhancements On Off] (What's this?)

  • [1] H. Attouch, Variational convergence for functions and Operators, Pitman, Boston, Mass., 1984. MR 773850 (86f:49002)
  • [2] H. Attouch and H. Brezis, Duality for the sum of convex functions in general Banach spaces, AVAMAC, Université de Perpignan, 1984.
  • [3] G. Beer, On Mosco convergence of convex sets, Bull. Austral. Math. Soc. 38 (1988), 239-253. MR 969914 (90a:46026)
  • [4] -, Support and distance functionals for convex sets, Numer. Funct. Anal. Optim. 10 (1989), 15-36. MR 978800 (89m:46031)
  • [5] -, On the Young-Fenchel transform for convex functions, Proc. Amer. Math. Soc. 104 (1988), 1115-1123. MR 937844 (89i:49006)
  • [6] J. Giles, Convex analysis with application in differentiation of convex functions, Research Notes in Math., vol. 58, Pitman, London, 1982. MR 650456 (83g:46001)
  • [7] R. Holmes, A course in optimizaiton and best approximation, Lecture Notes in Math., vol. 257, Springer-Verlag, New York, 1972. MR 0420367 (54:8381)
  • [8] J. Joly, Une famille de topologies sur l'ensemble des fonctions convexes pour lesquelles la polarité est bicontinue, J. Math. Pures Appl. 52 (1973), 421-441. MR 0500129 (58:17826)
  • [9] E. Klein and A. Thompson, Theory of correspondences, Wiley, Toronto, 1984. MR 752692 (86a:90012)
  • [10] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182. MR 0042109 (13:54f)
  • [11] J.-J. Moreau, $ \operatorname{Inf}$-Convolution des fonctions numériques sur un espace vectoriel, C. R. Acad. Sci. Paris 256 (1963), 5047-5049. MR 0154151 (27:4102)
  • [12] U. Mosco, Convergence of convex sets and of solutions of variational inequalitites, Adv. in Math. 3 (1969), 510-585. MR 0298508 (45:7560)
  • [13] -, On the continuity of the Young-Fenchel transform, J. Math. Anal. Appl. 35 (1971), 518-535. MR 0283586 (44:817)
  • [14] R. Robert, Convergence de fonctionelles convexes, J. Math. Anal. Appl. 45 (1974), 533-555. MR 0352927 (50:5413)
  • [15] G. Salinetti and R. Wets, On the relationship between two types of convergence for convex functions, J. Math. Anal. Appl. 60 (1977), 211-226. MR 0479398 (57:18828)
  • [16] D. Walkup and R. Wets, Continuity of some convex-cone valued mappings, Proc. Amer. Math. Soc. 18 (1967), 229-235. MR 0209806 (35:702)
  • [17] R. Wijsman, Convergence of sequences of convex sets, cones, and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32-45. MR 0196599 (33:4786)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 90C25, 26B25, 49A50, 54C08, 90C48

Retrieve articles in all journals with MSC: 90C25, 26B25, 49A50, 54C08, 90C48


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0953536-9
Keywords: Convex function, value functional, minimization, Mosco convergence, conjugate convex function, affine topology
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society