PIXLEY-ROY HYPERSPACES OF ω-GRAPHS

J. D. MASHBURN

Abstract. The techniques developed by Wage and Norden are used to show that the Pixley-Roy hyperspaces of any two ω-graphs are homeomorphic. The Pixley-Roy hyperspaces of several subsets of \mathbb{R}^n are also shown to be homeomorphic.

I. Introduction

Since it was introduced in 1969, the Pixley-Roy hyperspace, $\text{PR}[X]$, of a topological space X has been intensely studied with the hope of establishing how the properties of X affect those of $\text{PR}[X]$. This study has met with some success, especially in the area of cardinal functions. However, there is a class of questions which, until recently, eluded investigators: For which spaces X and Y will $\text{PR}[X]$ be homeomorphic to $\text{PR}[Y]$? For several years the only results in this area were some embedding results obtained by van Douwen [vD] and Lutzer [L]. In 1985 Wage [W] achieved a breakthrough by developing a technique for breaking up neighborhoods around points in certain spaces which allowed him to define homeomorphisms between those neighborhoods. Using this technique he was able to show that Pixley-Roy hyperspaces of spaces like \mathbb{R} or $[0, 1]$ are homogeneous. In 1986 Norden [N] extended Wage's technique to one which broke up an entire space. With this he was able to show that the Pixley-Roy hyperspaces of any two P-graphs (one-dimensional polyhedra with a finite number of points removed) are homeomorphic. It follows that the Pixley-Roy hyperspaces of spaces like \mathbb{R}, $[0, 1]$, and the circle are all homeomorphic. It is the purpose of this paper to use Norden's technique to show that Pixley-Roy hyperspaces of infinite, as well as finite, graphs are all the same.

Definition. A T_2 space X with no isolated points is an ω-graph if there is a countable discrete subset D of X and a countable collection I of pairwise disjoint copies of $(0, 1)$ such that $X \setminus D = \bigcup I$, I is locally finite on X, and for every $x \in D$, $\{x\} \cup \bigcup\{I \in I: x \in I\}$ is a neighborhood of x which can be embedded in \mathbb{R}^2. The set D is called a dividing set for X.

The main result of this paper can be stated as follows.

Received by the editors March 10, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 54B20; Secondary 54F65.

Supported by a Summer Research Grant from the University of Dayton.

©1989 American Mathematical Society
0002-9947/89 $1.00 + .25$ per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorem 1. If X and Y are ω-graphs then $\text{PR}[X]$ is homeomorphic to $\text{PR}[Y]$.

§II will consist of preliminary definitions, notation, and observations necessary for the proof of the Theorem 1. Theorem 1 will be proved in §III, and §IV will contain some related results.

We will use $\text{PR}[X]$ to denote the Pixley-Roy hyperspace of X. Our notation for the open subsets of $\text{PR}[X]$ will be standard. We will use $F[A]$ to denote the set of nonempty finite subsets of a set A, and $F'[A]$ to denote the set of all finite subsets of A. The notation “$X \approx Y$” will mean that X is homeomorphic to Y.

II. Preliminary matters

Let X be an ω-graph and let X_0 be a dividing set for X. Enumerate X_0 as $\{x_n : n < \omega\}$. Let I_0 be the countable collection of pairwise disjoint copies of $(0,1)$ whose union makes up $X \setminus X_0$. We may assume that every element of I_0 has at least one endpoint in X_0. For each $n < \omega$ let $\mu(n)$ be the number of elements of $X \setminus X_0$ having x_n as an endpoint. For each $I \in I_0$, fix a linear structure and orientation for I. Let Q_0 be the set of all midpoints of elements of I_0, and for each $p \in X_0$, let O_p be the component of $X \setminus Q_0$ containing p. Then Q_0 is a discrete subset of X and $O_p \cap O_q = \emptyset$ if $p \neq q$.

For each $p \in X_0$ and each $I \in I_0$ having p as an endpoint, choose a sequence of points in $I \cap O_p$ converging monotonically to p. This can be done because each element of X_0 is the endpoint of at least one element of I_0. Let Q_1 be the set of all points of X which are elements either of Q_0 or of the sequences just chosen. Call Q_1 the 1st cut-set of X. Set $\hat{Q}_0 = Q_1$. Let I_1 be the countable collection of pairwise disjoint copies of $(0,1)$ whose union makes up $X \setminus (\hat{Q}_1 \cup X_0)$. Call I_1 the set of intervals in X derived from \hat{Q}_1.

Assume that $n < \omega$, that Q_n is a discrete subset of $X \setminus X_0$, and that I_n is a countable collection of pairwise disjoint intervals in X. Let Q_{n+1}, the $(n+1)$th cut-set of X, be the set of midpoints of elements of I_n and let $\hat{Q}_{n+1} = \hat{Q}_n \cup Q_{n+1}$. Let I_{n+1}, the set of intervals in X derived from \hat{Q}_{n+1}, be the countable collection of pairwise disjoint copies of $(0,1)$ whose union makes up $X \setminus (\hat{Q}_{n+1} \cup X_0)$. Set $Q = \bigcup_{n<\omega} Q_n$.

For every $1 \leq m < \omega$ and every $n < \omega$, let $I_{m,n} = \{I \in I_m : I \subset O_{x_n}\}$. This is the set of those elements of I_m which "cluster" around x_n.

For every $1 \leq n < \omega$ let $\Sigma(n)$ be the set of sequences, σ, defined on $n+1$ such that $\sigma(0), \sigma(1) \in \omega$ and $\sigma(m) \in \{0,1\}$ for all $1 < m \leq n$. Let $m < \omega$. Since $I_{1,m}$ is countable, it can be enumerated as $\{I_{(m,n)} : n < \omega\}$. In this way the set I_1 is indexed by $\Sigma(1)$. Assume that the elements of $\Sigma(n)$ have been used to index the elements of I_n. Let $I \in I_{n+1}$. There is a unique $\sigma \in \Sigma(n)$ such that $I \subset I_{\sigma}$. If I is the left-hand half of I_{σ}, then let τ be the element of $\Sigma(n+1)$ such that $\tau(n+1) = 1$ and $\tau(n+1) = 0$ and set $I_{\tau} = I$. If I is the right-hand half of I_{σ}, then let τ be the element of $\Sigma(n+1)$ such that $\tau(n+1) = \sigma$ and $\tau(n+1) = 1$ and set $I_{\tau} = I$. Let $\Sigma = \bigcup_{1 \leq n < \omega} \Sigma(n)$.
The following lemma consists of observations which are immediate consequences of the previous definitions and its proof is omitted.

Lemma 2. Let $1 \leq m \leq n < \omega$.

1. If $I \in I_n$ then $I \cap Q_m \neq \emptyset$.
2. If $p \in Q_m$ then there are exactly two elements, I_1 and I_2, of I_n such that p is an endpoint of both I_1 and I_2. Furthermore, $I_1 \cup I_2 \cup \{p\}$ is open in X.
3. If $I \in I_m$ then there are exactly two elements of I_{m+1} that are subintervals of I.
4. If $I_{\sigma} \in I_n$ then there is exactly one element, $I_{\sigma 1 m+1}$, of I_m that contains I_{σ}.
5. If $\sigma \in \Sigma(1)$, $\sigma(0) = k$, and $\sigma(1) = 1$, then I_{σ} is the lth element of I_{k}.
6. If $I_{\sigma} \in I_{n,k}$ then $\sigma \in \Sigma(n)$ and $\sigma(0) = k$.
7. For any $n, k < \omega$, $\{\text{Int}[\text{Cl}(\{I_{\sigma} \in I_{n,k} : \sigma(1) > a\})] : a < \omega\}$ forms a local base for x_k.

For each $p \in X$ and each $1 \leq n < \omega$ let $A_n(p) = \{I \in I_n : p \in \overline{I}\}$ and let $A_n^*(p) = \bigcup A_n(p)$. If $p \in Q_n$ then $A(p)$ and $A^*(p)$ will denote $A_{n+1}(p)$ and $A_{n+1}^*(p)$ respectively. If $B \in PR[X]$ then set $A_n(B) = \bigcup_{p \in B} A_n(p)$ and $A_n^*(B) = \bigcup_{p \in B} A_n^*(p)$. If $B \in F[Q_n]$ then set $A(B) = \bigcup_{p \in B} A(p)$ and $A^*(B) = \bigcup_{p \in B} A^*(p)$.

Set $M_0 = \{\emptyset\}$ and, for each $1 \leq n < \omega$, let $M_n = \{E \in F(\widehat{Q}_n) : E \cap Q_m \neq \emptyset$ for all $1 \leq m \leq n\}$. For $1 \leq n < \omega$ call M_n the set of elements of $PR[X]$ compatible with \widehat{Q}_n. Note that if $m > n$ and $E \in M_n$ then $E \cap Q_m = \emptyset$. Also, if $k \neq l$ then $M_k \cap M_l = \emptyset$. For each $n < \omega$ and each $E \in M_n$, let $S_E = \{A \in PR[X] : A \cap \widehat{Q}_{n+1} = E\}$. Thus, if $A \in S_E$ and $E \in M_n$, then $A \cap Q_{n+1} = \emptyset$. The set $\{S_E : E \in M\}$ where $M = \bigcup_{n<\omega} M_n$ is a partition of $PR[X]$ and is called the fundamental partition of $PR[X]$ based on M. If $E \in M_n$ then S_E can be written as $\{A \cup B \cup E : A \in F'[X_0]$ and $B \in F'[X \setminus \widehat{Q}_{n+1} \cup X_0]\}$.

Recall that $X \setminus (\widehat{Q}_{n+1} \cup X_0) = \bigcup I_{n+1}$.

For each $E \in M_n$ let $\widehat{F}_E = \{I \in I_{n+1} : I \subset A^*(E)\}$. If $n \geq 2$, let $E' = E \setminus Q_n = E \cap \widehat{Q}_{n-1}$. If $n \geq 3$ then $E'' = E \cap \widehat{Q}_{n-2}$. If $n = 2$ then set $E'' = \emptyset$.

Now let Y be another ω-graph and let Y_0 be a dividing set for Y. Enumerate Y_0 as $\{y_n : n < \omega\}$. Then the function $\lambda : X_0 \rightarrow Y_0$ given by $\lambda(x_n) = y_n$ is a bijection. Let J_0 be a countable collection of pairwise disjoint copies of $(0, 1)$ whose union is $Y \setminus Y_0$. We may again assume that every element of J_0 has at least one endpoint in Y_0. Let R_0 be the set of midpoints of elements of J_0. Let $\{R_n : 1 \leq n < \omega\}$ be the collection of cut-sets for Y and set $R = \bigcup_{n<\omega} R_n$. Let P_n be the component of $Y \setminus R_0$ that contains y_n. For each $0 < n < \omega$ let J_n be the set of intervals of $PR[Y]$ derived from R_n, each indexed as before by the elements of Σ. Let $\{N_k : k < \omega\}$ be the collection of
sets of elements of $\text{PR}[Y]$ compatible with $\{R_k : k < \omega\}$ and let $\{T_E : E \in \mathcal{N}\}$ be the fundamental partition of $\text{PR}[Y]$ based on $N = \bigcup_{k<\omega} N_k$. If $E \subseteq Q$ and $f : E \to R$, then f is level preserving if $f(E \cap Q_n) \subseteq R_n$ for all $n < \omega$.

For each $I \in I_n$ and $J \in J_n$ there is a unique linear homeomorphism between I and J that preserves orientation. Denote this homeomorphism by $\eta_{I,J}$. If $\sigma, \tau \in \Sigma(n)$, $I = I_{\sigma|m+1}$, and $J = J_{\tau|m+1}$ for some $m < n$, then $\eta_{I,J}(I_\sigma) = J_\tau$ if and only if $\sigma(k) = \tau(k)$ for all $m < k \leq n$. If $\Gamma : I_n \to J_n$ is a bijection, then $\Gamma^* : \bigcup I_n \to \bigcup J_n$ is the function $\bigcup_{I \in I_n} \eta_{I,J(I)}$. Γ^* is a homeomorphism that is linear and orientation preserving on each element of I_n.

Now order each I_n and J_n lexicographically using the indices of their elements. These collections then have order-type ω^2. Let $F \subseteq I_n$ and $G \subseteq J_n$ be equipotent finite sets and let $\gamma : F \to G$ be a bijection. Then $I_n \setminus F$ and $J_n \setminus G$ still have order-type ω^2, so there is a unique order isomorphism $\Delta_F : I_n \setminus F \to J_n \setminus G$. Define $\Gamma : I_n \to J_n$ by $\Gamma = \gamma \cup \Delta_F$. Then Γ is a bijection.

In those situations where more than one F is being considered and subscripts are used to distinguish the various set, the same subscripts will be used to distinguish the corresponding γ, Δ, and Γ functions. For example, the functions associated with F_1 will be γ_1, Δ_1, and Γ_1.

It will be necessary in what follows to compare the index of I_σ with that of $\gamma(I_\sigma)$ or $\Gamma(I_\sigma)$. In order to facilitate this, we will use $\gamma(\sigma)$ and $\Gamma(\sigma)$ to denote the indices of $\gamma(I_\sigma)$ and $\Gamma(I_\sigma)$ respectively.

The next lemma is obvious and its proof is omitted.

Lemma 3. Let $m < n < \omega$ and let $F_1 \subseteq I_m$ and $F_2 \subseteq I_n$ with $\{I \in I_n : I \subseteq F_1\} \subseteq \bigcup F_2$. If $\gamma_1 : F_1 \to J_m$ is a one-to-one function and $\gamma_2 : F_2 \to J_n$ is defined by $\gamma_2(I) = \Gamma^*(I)$, then $\Gamma^*(I) = \Gamma^*(I)$ for all $I \in I_n$.

Lemma 4. Let $F \subseteq I_k$ be finite and let $\gamma : F \to J_k$ be a one-to-one function. Assume that there are $b, c, m < \omega$ such that

1. $c - m > b$;
2. If $I_\sigma \in F$ then either $\sigma(1) \leq b$ or $\sigma(1) > c$;
3. if $I_\sigma \in F \cap I_{k,n}$ and $m \leq \sigma(1) \leq b$ then $\gamma(I_\sigma) \in J_{k,n}$ and $\gamma(\sigma)(1) \leq b$; and
4. if $I_\sigma \in F \cap I_{k,n}$ and $\sigma(1) > c$ then $\gamma(I_\sigma) \in J_{k,n}$ and $\gamma(\sigma)(1) > b$.

Then $\Gamma(I_\sigma) \in J_{k,n}$ and $\Gamma(\sigma)(1) > b$ for all $I_\sigma \in I_{k,n}$ with $\sigma(1) > c$.

Proof. Let $n < \omega$. The elements of $J_{k,n} \setminus \gamma(F)$ are the images under Δ_F of $I_{k,n} \setminus F$. By conditions 2 and 3,

$$|F \cap \{I_\sigma \in I_{k,n} : m \leq \sigma(1) \leq c\}| = |\{I_\sigma \in I_{k,n} : m \leq \sigma(1) \leq b\}|$$

$$\leq |\{J_\sigma \in J_{k,n} : J_\sigma \in \gamma(F) \text{ and } \sigma(1) \leq b\}|$$

$$= |\gamma(F) \cap \{J_\sigma \in J_{k,n} : \sigma(1) \leq b\}|.$$
Also, $|\{I_\sigma \in I_{k,n} : m \leq \sigma(1) \leq c\}| \geq |\{J_\sigma \in J_{k,n} : \sigma(1) \leq b\}|$ because $c - m > b$.

Therefore,

$$|\{I_\sigma \in I_{k,n} : m \leq \sigma(1) \leq c\}| \cap F = |\{I_\sigma \in I_{k,n} : m \leq \sigma(1) \leq c\}| \cap (F \cap \{I_\sigma \in I_{k,n} : m \leq \sigma(1) \leq c\}) \geq |\{J_\sigma \in J_{k,n} : \sigma(1) \leq b\}| \cap (\gamma(F) \cap \{J_\sigma \in J_{k,n} : \sigma(1) \leq b\})| = |\{J_\sigma \in J_{k,n} : \sigma(1) \leq b\}| \gamma(F)|.
$$

Thus, if $J_\tau \in J_{k,n}$ and $\tau(1) \leq b$ then there is $I_\alpha \in I_k$ such that either $I_\sigma \in F$ or $I_\sigma \in I_{k,n}$ and $\sigma(1) \leq c$, and $\Gamma(I_\sigma) = J_\tau$. It follows from this and condition 4 that if $I_\sigma \in I_{k,n}$ and $\sigma(1) > c$, then $\Gamma(I_\sigma) \in J_{k,n}$ and $\Gamma(\sigma)(1) > b$.

Lemma 5. Let $F_1, F_2 \subset I_k$ be finite and let $\gamma_1 : F_1 \rightarrow J_k$ and $\gamma_2 : F_2 \rightarrow J_k$ be one-to-one functions. Let $a, b, m < \omega$ such that

1. $b - a > m$;
2. $\{I_\sigma \in F_1 : \sigma(1) < a\} = \{I_\sigma \in F_2 : \sigma(1) < a\} = G$; and
3. $\gamma_1(I_\sigma) = \gamma_2(I_\sigma)$ for all $I_\sigma \in G$;

and that for $i = 1$ or 2,

4. if $I_\sigma \in \gamma_i(F_i)$ then either $\sigma(1) \leq a$ or $\sigma(1) > b$;
5. if $I_\sigma \in F_i$ and $\sigma(1) > b$ then $\gamma_i(\sigma)(1) > a$; and
6. for all $n < \omega$, if $I_\sigma \in \gamma_i(F_i) \cap J_{k,n}$ and $\gamma_i^{-1}(J_\sigma) \notin I_{k,n}$ then $\sigma(1) < m$.

Then $\Gamma_1(I_\sigma) = \Gamma_2(I_\sigma)$ for all $I_\sigma \in I_n$ with $\sigma(1) \leq a$.

Proof. Let $n < \omega$. By condition 2,

$$\{I_\sigma \in I_{k,n} : \sigma(1) \leq a\} \cap F_1 = I_{k,n} \cap G = \{I_\sigma \in I_{k,n} : \sigma(1) \leq a\} \cap F_2$$

and

$$\{I_\sigma \in I_{k,n} : \sigma(1) \leq a\} \cap F_1 = \{I_\sigma \in I_{k,n} : \sigma(1) \leq a\} \cap G$$

$$= \{I_\sigma \in I_{k,n} : \sigma(1) \leq a\} \cap F_2.$$

By conditions 2, 3, and 4,

$$\{J_\sigma \in J_{k,n} : \sigma(1) \leq b\} \gamma_1(F_1) = \{J_\sigma \in J_{k,n} : \sigma(1) \leq b\} \gamma_1(G)$$

$$= \{J_\sigma \in J_{k,n} : \sigma(1) \leq b\} \gamma_2(F_2).$$

If $I_\sigma \in I_{k,n} \cap G$ then $\Gamma_1(I_\sigma) = \gamma_1(I_\sigma) = \gamma_2(I_\sigma) = \Gamma_2(I_\sigma)$. The values of Γ_1 and Γ_2 on $\{I_\sigma \in I_{k,n} : \sigma(1) \leq a\} \cap G$ are determined by Δ_1 and Δ_2 respectively. We can establish the equality of Γ_1 and Γ_2 on $\{I_\sigma \in I_{k,n} : \sigma(1) \leq a\} \cap G$ by showing that this set is no larger than $\{J_\sigma \in J_{k,n} : \sigma(1) \leq b\} \gamma_1(G)$. Then, since both Δ_1 and Δ_2 take the αth element of $\{I_\sigma \in I_{k,n} : \sigma(1) \leq a\} \cap G$ to the
\[\{J_\sigma \in J_{k,n} : \sigma(1) \leq b\}\gamma_1(G)\]

\[= \{J_\sigma \in J_{k,n} : \sigma(1) \leq a\}\gamma_1(G) + \{J_\sigma \in J_{k,n} : a < \sigma(1) \leq b\}\]

(by condition 4)

\[= \{J_\sigma \in J_{k,n} : \sigma(1) \leq a\}\gamma_1(I_\sigma) + \{J_\sigma \in J_{k,n} : a < \sigma(1) \leq b\}\gamma_1(I_\sigma)\]

(by conditions 1 and 6)

III. Proof of Theorem 1

Let \(X\) and \(Y\) be \(\omega\)-graphs with dividing sets \(X_0\) and \(Y_0\). We will use the structures and definitions developed in §II. Let \(g : Q_1 \to R_1\) be a bijection such that \(g(Q_1 \cap O_n) = R_1 \cap P_n\) for all \(n < \omega\). Then \(g(Q_0) = R_0\). For our convenience later in the proof, we will assume that the first \(\mu(n)\) elements of any \(I_{m,n}\) are those elements of \(I_{m,n}\) having an element of \(Q_0\) as an endpoint.

The homeomorphism we will define is essentially that defined by Norden in [N].

Define \(r_\phi : I_1 \to J_1\) by \(r_\phi(I_\sigma) = J_\sigma\), and \(h_\phi : \bigcup I_1 \to \bigcup J_1\) by \(h_\phi = \Gamma_\phi^*\). Then \(h_\phi\) is a homeomorphism. Set \(\theta(\phi) = \phi\).

Let \(E \in M_1\). Set \(f_E = g \mid E\) and \(\theta(E) = f_E\). Let \(F_E = \Gamma_\phi\) and \(F_{\theta(E)} = \Gamma_{\theta(E)}\). Each \(I \in F_E\) is adjacent to exactly one element of \(E\) and each element of \(E\) is the endpoint of exactly two elements of \(F_E\). Similarly, each element of \(F_{\theta(E)}\) is adjacent to exactly one element of \(\theta(E)\) and each element of \(\theta(E)\) is the endpoint of exactly two elements of \(F_{\theta(E)}\). Define \(\gamma_E : F_E \to F_{\theta(E)}\) as follows. Let \(I \in F_E\) and let \(p \in E\) be an endpoint of \(I\). If \(p\) is the right-hand endpoint of \(I\), then set \(\gamma_E(I)\) equal to the element of \(F_{\theta(E)}\) which has \(g(p)\) for its right-hand endpoint. If \(p\) is the left-hand endpoint of \(I\), then set \(\gamma_E(I)\) equal to the element of \(F_{\theta(E)}\) which has \(g(p)\) for its left-hand endpoint. Then \(\gamma_E\) is a bijection. Define \(h_E : (\bigcup I_1) \cup E \to (\bigcup J_2) \cup \theta(E)\) by \(h_E = \Gamma_{\phi^*} \cup f_E\). Both \(\Gamma_{\phi^*}\) and \(f_E\) are bijections so \(h_E\) is a bijection. It is also a homeomorphism on \(\bigcup I_2\) because \(\Gamma_{\phi^*}\) is. Let \(x \in E\) and let \(V\) be a neighborhood of \(f_E(x)\) in \(Y\). By the definition of \(\gamma_E\) there is a neighborhood \(U\) of \(x\) in \(A^*(x) \cup \{x\}\) such that \(h_E(U) \subseteq V\). Thus \(h_E\) is continuous at \(x\). A similar argument shows that \(h_E^{-1}\) is continuous at \(h_E(x)\), so \(h_E\) is a homeomorphism.
Let $2 \leq 1 < \omega$ and assume that for all $k < 1$ and all $E \in M_k$,

1. $f_E: E \to \hat{R}_k$ is a level preserving one-to-one function and $\theta(E) = f_E(E)$;

2. $F_E \subset I_{k+1}$ and $F_{\theta(E)} \subset J_{k+1}$ are finite and $\gamma_E: F_E \to F_{\theta(E)}$ is a bijection; and

3. the function $h_E: (\bigcup I_{k+1}) \cup E \to (\bigcup J_{k+1}) \cup \theta(E)$ given by $h_E = \Gamma_E \cup f_E$ is a homeomorphism.

Fix $E \in M_k$. Each element of $E \cap Q_l$ is the midpoint of some element of I_{l-1} and $h_E^{'''}$, which is defined on $\bigcup I_{l-1}$, takes midpoints to midpoints. Thus $h_E^{'''}(p) \in R_l$ for all $p \in E \cap Q_l$. Define $f_E: E \to \hat{R}_l$ by

$$f_E(p) = \begin{cases} h_E^{'}(p) & \text{if } p \in E \cap \hat{Q}_{l-1}, \\ h_E^{'''}(p) & \text{if } p \in E \cap Q_l. \end{cases}$$

Then f_E is a one-to-one level preserving function. Note that if $p \in E \cap \hat{Q}_{l-1}$ then $f_E(p) = h_{E^{'}}(p) = f_{E^{'}}(p)$. Extending this backward, we can see that if $1 \leq k < l$ and $p \in E \cap \hat{Q}_k$ then $f_E(p) = f_{E \cap \hat{Q}_k}(p)$.

Let $F_{E_1} = A(E \cap Q_l)$ and $F_{\theta(E_1)} = A(\theta(E) \cap R_l)$. Let $I \in F_{E_1}$ and let $p \in E \cap Q_l$ be an endpoint of I. Then $f_E(p) = h_E^{'''}(p) \in R_l$ and $h_E^{'''}(p)$ is an endpoint of $h_E^{'''}(I)$ because $h_E^{'''}$ is continuous. Thus $h_E^{'''}(I) \in F_{\theta(E_1)}$. A similar argument shows that if $h_E^{'''}(I) \in F_{\theta(E_1)}$ then $I \in F_{E_1}$.

Let $F_{E_2} = \{I \in \hat{F}_E \setminus F_{E_1}: h_{E^{'}}(I) \in \hat{F}_{\theta(E)} \setminus F_{\theta(E)} \}$ and let $F_{\theta(E_2)} = \{J \in \hat{F}_{\theta(E)} \setminus F_{\theta(E)}: h_{E^{''}}^{-1}(J) \in \hat{F}_E \setminus F_{E} \}$. Clearly $I \in F_{E_2}$ if and only if $h_{E^{'}}(I) \in F_{\theta(E_2)}$. Set $F_E = F_{E_1} \cup F_{E_2}$ and $F_{\theta(E)} = F_{\theta(E_1)} \cup F_{\theta(E_2)}$. Define $\gamma_E: F_E \to F_{\theta(E)}$ by

$$\gamma_E(I) = \begin{cases} h_{E^{''}}(I) & \text{if } I \in F_{E_1}, \\ h_{E^{'}}(I) & \text{if } I \in F_{E_2}. \end{cases}$$

Then γ_E is a bijection.

Define $h_E: (\bigcup I_{l+1}) \cup E \to (\bigcup J_{l+1}) \cup \theta(E)$ by $h_E = \Gamma_E \cup f_E$. The function h_E is a bijection because Γ_E and f_E are bijections and is a homeomorphism on $\bigcup I_{l+1}$ because Γ_E is. If $p \in E \cap Q_l$ then $A(p) \subset F_{E_1}$ and $h_E(A^*(p) \cup \{p\}) = h_E^{'''}(A^*(p) \cup \{p\})$. Now let $p \in E'$. If $I \in A_{l+1}(p)$ then $I \in \hat{F}_E$. Since p is an endpoint of I and $p \in \hat{Q}_{l-1}$, the other endpoint of I must be an element of Q_{l+1}. Hence $I \not\in F_{E_1}$. To show that $h_{E^{'}}(I) \in \hat{F}_{\theta(E)} \setminus F_{\theta(E)}$, note that $p \in E'$ and $h_{E^{'}}$ is continuous on $(\bigcup I_l) \cup E'$. So $f_{E^{'}}(p) = F_{E^{'}}(p)$ is an endpoint of $h_{E^{'}}(I)$. But $f_{E^{'}}$ is level preserving, so $f_{E^{'}}(p) \in \hat{R}_{l+1}$. Again, the other endpoint of $h_{E^{'}}(I)$ must be an element of R_{l+1}. Hence $h_{E^{'}}(I) \in \hat{F}_{\theta(E)} \setminus F_{\theta(E)}$. It follows that $A_{l+1}(p) \subset F_{E_2}$ and $h_E(A_{l+1}^*(p) \cup \{p\}) = h_{E^{'}}(A_{l+1}^*(p) \cup \{p\})$. But $h_{E^{'}}$ is a homeomorphism on $(\bigcup I_l) \cup E'$ and $h_E^{'''}$ is a homeomorphism on $\bigcup I_{l-1}$, so h_E is a homeomorphism on $(\bigcup I_{l+1}) \cup E$.
Notice that for any \(k < \omega \), \(E \subseteq M_k \), \(x_n \in X_0 \), and \(I_\sigma \in I_{k,n} \), if \(\Gamma_{E}(I_\sigma) \notin J_{k,n} \) then \(\sigma(1) < \mu(n) \) because only the first \(\mu(n) \) elements of \(I_{1,n} \) have endpoints in \(Q_0 \).

For all \(n < \omega \) and all \(E \subseteq M_n \), define \(H_{E} : S_{E} \rightarrow T_{\theta(E)} \) by \(H_{E}(A) = \lambda(A \cap X_0) \cup h_{E}(A \setminus X_0) \). Finally, define \(H : \text{PR}[X] \rightarrow \text{PR}[Y] \) by \(H = \bigcup_{E \in M} H_{E} \).

To show that \(H \) is a bijection it is sufficient to show that \(\theta \) is a bijection. Let \(E, D \subseteq M \) and \(E \neq D \). Then \(\theta(E) = f_{E}(E) \) and \(\theta(D) = f_{D}(D) \). Both \(f_{E} \) and \(f_{D} \) are level-preserving one-to-one functions, so \(\theta(E) \neq \theta(D) \) if \(E \subseteq M_k \) and \(D \subseteq M_l \) and \(k \neq l \). Assume that \(E, D \subseteq M_k \). Then \(\theta(E) = g(E) \neq g(D) = \theta(D) \) since \(g \) is a bijection. Assume that \(E, D \subseteq M_k \) for some \(k > 1 \). Either \(E \cap Q_k \neq D \cap Q_k \) or \(E' \neq D' \). But the functions \(h_{E'}, h_{E''} \), \(h_{D'}, h_{D''} \) are all one-to-one, so either \(h_{E''}(E \cap Q_k) \neq h_{D''}(D \cap Q_k) \) or \(h_{E'}(E') \neq h_{D'}(D') \). In either case, \(\theta(E) \neq \theta(D) \).

Let \(A \subseteq S_{E} \) where \(E \subseteq M_k \) and let \(V \) be a neighborhood of \(H(A) \) in \(Y \). Pick \(a < \omega \) such that if \(I_{\alpha} \in A_{1}(A) \) then \(\sigma(1) < a \) and if \(J_{\alpha} \in A_{1}(H(A)) \) then \(\sigma(1) < a \). Let \(m = \max \{ \mu(n) : A_{1}(A) \cap I_{1,n} \neq \emptyset \} \). Let \(b \in \omega \) such that \(b - m > a \) and

\[
\text{Int} \left[\text{Cl} \left(\bigcup \{ J_{\alpha} \in J_{1,n} : \sigma(1) > b \} \right) \right] \subseteq V
\]

for all \(y_n \in H(A) \cap Y_0 \). Set

\[
V_{y_n} = \text{Int} \left[\text{Cl} \left(\bigcup \{ J_{\alpha} \in J_{1,n} : \sigma(1) > b \} \right) \right]
\]

and set \(V'_{y} = \bigcup_{p \in H(A) \cap Y_0} V_{p} \). Pick \(c \in \omega \) such that \(c - m > b \) and if \(x_n \in A \cap X_0 \) and \(p \in Q_{1} \cap \text{Int}[\text{Cl}(\bigcup \{ I_{\alpha} \in I_{1,n} : \sigma(1) > c \})] \), then \(g(p) \in V_{y_n} \). For each \(x_n \in A \cap X_0 \) set \(U_{x} = \text{Int}[\text{Cl}(\bigcup \{ I_{\alpha} \in I_{1,n} : \sigma(1) > c \})] \). Let \(U_{0} = \bigcup_{p \in A \cap X_0} U_{p} \).

If \(A \cap X_{0} = \emptyset \) then set \(U_{0} = \emptyset \). Pick \(r \geq k + 1 \) such that \(h_{E}(A_{r}(p)) \subseteq V \) for all \(p \in A \cap X_{0} \). Set \(U_{p} = A_{r}(p) \cup \{ p \} \) for \(p \in A \cap X_{0} \) and set \(U_{1} = \bigcup_{p \in A \cap X_{0}} U_{p} \).

Let \(U = U_{0} \cup U_{1} \). Note that:

1. if \(I_{\sigma} \cap U_{1} \neq \emptyset \) then \(\sigma(1) \leq a \);
2. if \(J_{\sigma} \cap (H(A) \cap Y_{0}) \neq \emptyset \) then \(\sigma(1) \leq a \);
3. if \(I_{\sigma} \cap U_{x} \neq \emptyset \) for some \(x_n \in A \cap X_0 \) then \(I_{\sigma} \cap I_{1,n} \neq \emptyset \);
4. if \(J_{\sigma} \cap V_{y} \neq \emptyset \) for some \(y_n \in H(A) \cap Y_{0} \) then \(J_{\sigma} \cap J_{1,n} \neq \emptyset \);
5. if \(p \in A \cap X_{0} \) then \(U_{p} \cap \hat{Q}_{k+1} \subseteq \{ p \} \).
6. \(a, b, c \) and \(m \) satisfy condition 1 in Lemmas 4 and 5; and
7. if \(I_{\sigma} \in I_{k,n} \) and \(m \leq \sigma(1) \) then \(H_{D}(I_{\sigma}) \subseteq \bigcup J_{1,n} \) for any \(0 < 1 < \omega, n < \omega \), and \(D \in M \).

The heart of the proof that \(H([A, U]) \subseteq [H(A), V] \) is contained in Lemmas 6 and 7.

Lemma 6. Let \(D \subseteq M_j \) where \(1 \leq j \leq k \), \(D \subseteq U \), and \(D \cap U_{1} = E \cap \hat{Q}_{j} \). Let \(C = E \cap \hat{Q}_{j} \). Then

1. if \(p \in D \cap U_{q} \) for some \(q \in A \cap X_{0} \) then \(f_{D}(p) \in V_{q} \);
2. If \(p \in D \cap U_q \) for some \(q \in E \) then \(p = q \) and \(f_D(p) = f_E(p) \);
3. If \(I_\sigma \in J_{j+1} \) and \(\sigma(1) \leq a \) then \(\Gamma_C(I_\sigma) = \Gamma_D(I_\sigma) \); and
4. If \(I_\sigma \in J_{j+1,n} \), \(x_n \in A \cap X_0 \), and \(\sigma(1) > c \), then \(\Gamma_D(I_\sigma) \in J_{j+1,n} \) and \(\Gamma_D(\sigma)(1) > b \).

Proof. To begin with, let us take note of three useful facts. First, since \(\Gamma_D(I_\sigma) = J_\sigma \) for all \(I_\sigma \in I_1 \), if \(I_\sigma \in J_{j+1,n} \) and \(\sigma(1) > c \), then \(\Gamma_D(I_\sigma) = J_\sigma = J_{j+1,n} \) and \(\Gamma_D(\sigma)(1) = \sigma(1) > c > b \). Also, for any \(j \), if \(p \in C \) then \(f_C(p) = f_E(p) \).

Furthermore, if \(I_\sigma \in F_D \) then either \(\sigma(1) \leq a < b \) or \(\sigma(1) > c \).

Let \(j = 1 \). Then \(D \subseteq Q_1 \) and \(D \cap U_1 = E \cap Q_1 \). Let \(p \in D \). If \(p \in U_q \) for some \(q \in A \setminus X_0 \), then \(f_D(p) = g(p) \in V_{\beta(q)} \). If \(p \in U_q \) for some \(q \in A \setminus X_0 \), then \(q = p \) and \(f_D(p) = g(p) = f_C(p) \).

Let \(n < \omega \) and let \(I_\sigma \in J_{j,n} \cap F_D \) with \(\sigma(1) > c \). Let \(p \in D \) be an endpoint of \(I_\sigma \). Since \(\sigma(1) > c \), \(p \) must be in \(U_x \). Then \(f_D(p) \), which is an endpoint of \(\gamma_D(I_\sigma) \), is in \(V_{\gamma_x} \). Thus \(\gamma_D(I_\sigma) \in J_{j,n} \) and \(\gamma_D(\sigma)(1) > b > a \).

It follows from \(D \cap U_1 = C \) that \(F_C = \{ I_\sigma \in F_D : \sigma(1) \leq a \} \). Let \(I_\sigma \in F_C \). Let \(p \in D \) be an endpoint of \(I_\sigma \). Then \(p \) must be an element of \(U_x \), so \(f_D(p) = f_E(p) = f_C(p) \). Thus \(f_E(p) \) is an endpoint for both \(\gamma_C(I_\sigma) \) and \(\gamma_D(I_\sigma) \). Since both \(\gamma_C \) and \(\gamma_D \) preserve orientation, it must be true that \(\gamma_C(I_\sigma) = \gamma_D(I_\sigma) \).

Also, \(\gamma_D(\sigma)(1) \leq a < b \) because \(f_D(p) \in H(A) \cap Y_0 \).

By Lemma 4, if \(I_\sigma \in J_{j,n} \) and \(\sigma(1) > c \), then \(\Gamma_D(I_\sigma) \in J_{j,n} \) and \(\Gamma_D(\sigma)(1) > b > a \). By Lemma 5, if \(I_\sigma \in J_{j,n} \) and \(\sigma(1) \leq a \), then \(\Gamma_D(I_\sigma) = \Gamma_C(I_\sigma) \).

Let \(2 \leq j \leq k \) and assume that the lemma is valid for all \(1 \leq i < j \) and all \(D \in M_i \) with \(D \subset U \) and \(D \cap U_1 = E \cap Q_{\hat{i}} \). Let \(D \in M_j \) with \(D \subset U \) and \(D \cap U_1 = E \cap Q_{\hat{j}} \). Then \(D' \in M_{j-1} \), \(D' \subset U \), and \(D' \cap U_1 = E \cap Q_{\hat{j}-1} = C' \), so the lemma is valid for \(D' \). If \(j = 2 \), then \(D'' = C'' = \emptyset \). If \(j > 2 \), then \(D'' \in M_{j-2} \), \(D'' \subset U \), and \(D'' \cap U_1 = E \cap Q_{\hat{j}-2} = C'' \). Thus the lemma is valid for \(D'' \).

Let \(p \in D \cap U_\sigma \) for some \(x_n \in A \cap X_0 \). If \(p \in \hat{j}_1 \) then \(f_D(p) = f_D'(p) \in V_{\gamma_x} \). If \(p \in C \) then \(f_D(p) = h_D''(p) \). Now \(p \) is the midpoint of some element \(I_\sigma \) of \(J_{j-1,n} \) where \(\sigma(1) > c \). But \(\Gamma_D''(I_\sigma) \in J_{j-1,n} \) and \(\Gamma_D''(\sigma)(1) > b > a \) and \(h_D''(I_\sigma) \) is the midpoint of \(\Gamma_D''(I_\sigma) \). Hence \(f_D(p) \in V_{\gamma_x} \).

Let \(p \in D \cap U_q \) for some \(q \in A \setminus X_0 \). Then \(q \in E \) and \(q = p \). If \(p \in \hat{j}_1 \) then \(f_D(p) = f_D'(p) \). If \(p \in C \) then \(f_D(p) = f_D''(p) \). If \(p \in \hat{j}_q \) then

\[
\begin{align*}
\gamma_D(\sigma)(1) \leq a < b
\end{align*}
\]

Let \(n < \omega \) and let \(I_\sigma \in F_D \cap J_{j+1,n} \) with \(\sigma(1) > c \). Either \(\gamma_D(I_\sigma) = \Gamma_D(I_\sigma) \) or \(\gamma_D(I_\sigma) = \Gamma_D''(I_\sigma) \). In either case, \(\gamma_D(I_\sigma) \in J_{j+1,n} \) and \(\gamma_D(J_\sigma)(1) > b > a \).

It follows from the inductive hypotheses that \(F_C = \{ I_\sigma \in F_D : \sigma(1) \leq a \} \) and \(F_C = \{ I_\sigma \in F_D : \sigma(1) \leq a \} \). Let \(I_\sigma \in F_C \). If \(I_\sigma \in F_D \) then \(\gamma_D(I_\sigma) = \Gamma_D''(I_\sigma) \). But \(\Gamma_D''(I_\sigma) = \Gamma_D''(I_\sigma) \) so \(\gamma_D(I_\sigma) = \gamma_D(I_\sigma) \). If \(I_\sigma \in F_D \) then \(\gamma_D(I_\sigma) = \Gamma_D''(I_\sigma) \). But \(\Gamma_D''(I_\sigma) = \Gamma_D''(I_\sigma) \) so \(\gamma_D(I_\sigma) = \gamma_C(I_\sigma) \). In either case, \(\gamma_D(I_\sigma) \leq a < b \).
By Lemma 4, if \(I_\sigma \in I_{j+1,n} \) and \(\sigma(1) > c \), then \(\Gamma_D(I_\sigma) \in J_{j+1,n} \) and \(\Gamma_D(\sigma)(1) > b \). By Lemma 5, if \(I_\sigma \in I_{j+1} \) and \(\sigma(1) \leq a \), then \(\Gamma_D(I_\sigma) = \Gamma^*_E(I_\sigma) \).

Lemma 7. If \(k < l \), \(D \in M_l \), and \(E \subset D \subset U \), then

1. if \(p \in D \cap U_q \) for some \(q \in A \cap X_0 \) then \(f_D(p) \in V_{A(q)} \);
2. if \(p \in D \cap U_q \) for some \(q \in A \setminus X_0 \) then \(f_D(p) \in V \);
3. if \(I_\sigma \in I_{l+1,n} \) for some \(x_n \in A \cap X_0 \) and \(\sigma(1) > c \), then \(\Gamma_D(I_\sigma) \in J_{l+1,n} \) and \(\Gamma_D(\sigma)(1) > b \); and
4. if \(I_\sigma \in I_{l+1} \) and \(\sigma(1) \leq a \) then \(\Gamma_D(I_\sigma) = \Gamma^*_E(I_\sigma) \).

Note that condition 4 implies that \(\gamma_D(\sigma)(1) \leq a \) for all \(I_\sigma \in F_D \) with \(\sigma(1) \leq a \).

Proof. The case \(k = 1 \) is given by Lemma 6.

Assume that \(l = k + 1 \). Then \(D' \in M_k \), \(D' \subset U \), and \(D' \cap U_1 = E \). Also, \(D'' \in M_{k-1} \), \(D'' \subset U \), and \(D'' \cap U_1 = E' \). So Lemma 6 holds for \(D' \) and \(D'' \).

Let \(p \in D \cap U_q \) for some \(q \in A \cap X_0 \) if \(p \in \hat{Q}_k \) then \(f_D(p) = f_{D'}(p) \in U_q \). Let \(p \in Q_k \). Then \(p \) is the midpoint of some element \(I_\sigma \) of \(I_{k,n} \) where \(\sigma(1) > c \). Also, \(f_D(p) = h_{D''}(p) \) and \(h_{D''}(p) \) is the midpoint of \(\Gamma_{D''}(I_\sigma) \). But \(\Gamma_{D''}(I_\sigma) \in J_{k,n} \) and \(\Gamma_{D''}(\sigma)(1) > b \). Thus \(f_D(p) \in U_q \).

Let \(p \in D \cap U_q \) for some \(q \in A \setminus X_0 \). Now \(U_q \cap \hat{Q}_1 \subset \{q\} \) so \(p = q \) and \(p \in \hat{Q}_k \). Thus \(f_D(p) = f_{D'}(p) = f_E(p) \in V \).

Let \(I_\sigma \in F_D \cap I_{l+1,n} \) for some \(x_n \in A \cap X_0 \) and let \(\sigma(1) > c \). Either \(\gamma_D(I_\sigma) = \Gamma^*_{D'}(I_\sigma) \) or \(\gamma_D(I_\sigma) = \Gamma^*_{D''}(I_\sigma) \). In either case, \(\gamma_D(I_\sigma) \in J_{l+1,n} \) and \(\gamma_D(\sigma)(1) > b > a \).

To show that conditions 3 and 4 hold, consider the sets \(F = \{I \in I_{l+1} : I \subset \bigcup F_E\} \) and \(G = \{I_\sigma \in F_D : \sigma(1) \leq a\} \). Define \(\gamma \) on \(G \) by \(\gamma(I) = \Gamma^*_E(I) \). We will show that \(F \subset G \). Let \(I_\sigma \in F \). Then \(\sigma(1) \leq a \) and \(I_{\sigma|k+1} \in \hat{F}_E \). Now \(A(E) \subset A(D) \) because \(E \subset D \). Also, \(A(\theta(E)) \subset A(\theta(D)) \). Thus \(I_\sigma \in \hat{F}_D \) and \(h_{D'}(I_\sigma) = h_{E}(I_\sigma) = \Gamma^*_E(I) \). If \(I_\sigma \in F_{D1} \) then there is \(p \in D \cap Q_l \) such that \(p \) is an endpoint of \(I_\sigma \). Then, since \(\sigma(1) \leq a \), \(p \in U_1 \). But \(U_1 \cap Q_l = \emptyset \), so \(I_\sigma \notin F_{D1} \). If \(p \in D \cap Q_l \), then \(p \in U_0 \) and \(f_D(p) \in V_0 \). But \(\Gamma_{D'}(\sigma)(1) \leq a \), so \(h_{D'}(I_\sigma) \) cannot have an endpoint in \(\theta(D) \cap R_l \). Therefore \(h_{D'}(I_\sigma) \in \hat{F}_{\theta(D)} \), and \(I_{\sigma} \in G \). By Lemma 3, \(\Gamma(I) = \Gamma^*_E(I) \) for all \(I \in I_{l+1} \). If \(I \in G \) then \(I \in F_{D2} \) so \(\gamma_D(I) = \Gamma^*_E(I) = \Gamma^*_E(I) = \gamma(I) \). Thus \(\gamma_D(I_\sigma) \in J_{l+1,n} \) and \(\gamma_D(\sigma)(1) \leq a < b \) for all \(I_\sigma \in F_D \cap I_{l+1,n} \) with \(m \leq \sigma(1) \leq b \). By Lemma 4, if \(I_\sigma \in I_{l+1,n} \) for some \(x_n \in A \cap X_0 \) and \(\sigma(1) > c \), then \(\Gamma_D(I_\sigma) \in J_{l+1,n} \) and \(\Gamma_D(\sigma)(1) > b \). By Lemma 5, \(\Gamma_D(I_\sigma) = \Gamma(I_\sigma) = \Gamma^*_E(I_\sigma) \) for all \(I_\sigma \in I_{l+1} \) with \(\sigma(1) \leq a \).

Let \(l \geq k + 2 \) and assume that if \(j = l - 1 \) or \(j = l - 2 \), \(C \in M_j \), and \(E \subset C \subset U \), then the lemma holds for \(C \). Let \(D \in M_l \) with \(E \subset D \subset U \). Then \(D \cap U_q \cap \hat{Q}_{k+1} = \emptyset \). Furthermore \(D' \in M_{l-1} \), \(E \subset D' \subset U \), \(D'' \in M_{l-2} \), and \(E \subset D'' \subset U \). Thus the lemma holds for \(D' \) and \(D'' \).
Let \(p \in D \cap U_x \) for some \(x_n \in A \cap X_0 \). If \(p \in Q_{l-1} \) then \(f_D(p) \subseteq f_D'(p) \subseteq V_n \). If \(p \in Q_l \) then \(p \) is the midpoint of some \(I_a \in J_{l-1,n} \) with \(\sigma(1) > c \). But \(f_D'(p) = h_D''(p) \) is the midpoint of \(\Gamma_D''(I_a) \) and \(\Gamma_D''(I_a) \in J_{l-1,n} \) with \(\Gamma_D''(\sigma)(1) > b \). Hence \(f_D(p) \in V_n \).

Let \(p \in D \cap U_q \) for some \(q \in A \setminus X_0 \). If \(p \in Q_{l-1} \) then \(f_D(p) = f_D'(p) \subseteq V \).

If \(p \in Q_l \) then \(f_D(p) = h_D''(p) = \Gamma_D''(p) = \Gamma_E(p) \subseteq V \) because \(h_E(U_q) \subseteq V \).

Let \(I_a \in F_D \cap I_{l+1,n} \) for some \(x_n \in A \cap X_0 \) and let \(\sigma(1) > c \). Either \(\gamma_D(I_a) = \Gamma_D'(I_a) \) or \(\gamma_D(I_a) = \Gamma_D''(I_a) \). In either case, \(\gamma_D(I_a) \in J_{l+1,n} \) and \(\gamma_D(\sigma)(1) > b > a \).

To show that conditions 3 and 4 hold, consider the sets \(F = \{ I \in I_{l+1}: I \subseteq \bigcup F_E \} \) and \(G = \{ I \in F_D: \sigma(1) \leq a \} \). Define \(\gamma \) on \(G \) by \(\gamma(I) = \Gamma_E(I) \).

Let \(I_\sigma \in F \). Then \(I_\sigma \in F_D \) because \(E \in D \) and \(h_D'(I_\sigma) = h_E(I_\sigma) \in F_{\theta(D)} \) because \(\theta(E) \subseteq \theta(D) \). Assume that \(I_\sigma \notin F_D \). Let \(p \in D \cap Q_1 \). We will show that \(f_D(p) \) cannot be an endpoint of \(h_D'(I_\sigma) \).

If \(p \in U_0 \), then \(f_D(p) \subseteq V_0 \). But \(\Gamma_D'(\sigma)(1) \leq a \) so \(f_D(p) \) is not an endpoint of \(h_D'(I_\sigma) \).

If \(p \in U_1 \) then \(p \in I_{k+2} \) for some \(I_{k+2} \in I_{k+2,n} \) with \(\tau(1) \leq a \). By the induction hypotheses, \(f_D(p) = h_D'(p) = h_E(p) \subseteq h_E(I_{k+2}) \).

If \(\sigma \in \Gamma_D'(I_{k+2}) \) then \(\gamma_D(I_{k+2}) \in F_{\theta(D)} \) and \(\sigma(1) < b \).

By Lemma 3, \(\gamma(I) = \Gamma_E(I) \) for all \(I \in I_{l+1} \). If \(I \in G \) then either \(\gamma_D(I) = \Gamma_D'(I) \) or \(\gamma_D(I) = \Gamma_D''(I) \). In either case, \(\gamma_D(I) = \Gamma_E(I) = \gamma(I) \).

Thus \(\gamma_D(I_\sigma) \in J_{l+1,n} \) and \(\gamma_D(\sigma)(1) \leq b \) for all \(I_\sigma \in F_D \cap I_{l+1,n} \) with \(m \leq \sigma(1) \leq b \).

By Lemma 4, if \(I_\sigma \in I_{l+1,n} \) for some \(x_n \in A \cap X_0 \) and \(\sigma(1) > c \), then \(\Gamma_D(I_\sigma) \in J_{l+1,n} \) and \(\Gamma_D(\sigma)(1) > b \). By Lemma 5, if \(I_\sigma \in I_{l+1,n} \) and \(\sigma(1) \leq a \), then \(\Gamma_D(I_\sigma) = \Gamma_E(I_\sigma) \).

Now let \(B \in [A, U] \) and let \(B \in S_D \). Then \(D \in M_I \) for some \(l \geq k \) and \(E \subseteq D \subseteq U \). Also, \(B \cap X_0 = A \cap X_0 \) so \(h(B \cap X_0) = h(A \cap X_0) \subseteq V \). Let \(p \in B \setminus X_0 \). If \(p \in D \), then \(f_D(p) \subseteq V \) by Lemma 7. Assume that \(p \notin D \).

There is \(I_\sigma \in I_{l+1} \) such that \(p \in I_\sigma \). If \(p \in U_{x_n} \) for some \(x_n \in A \cap X_0 \) then \(I_\sigma \in I_{l+1,n} \) and \(\sigma(1) > c \). By Lemma 7, \(h_D(I_\sigma) = \Gamma_D'(I_\sigma) \subseteq J_{l+1,n} \) and \(\Gamma_D'(\sigma)(1) > b \).

Thus \(h_D(p) \subseteq V \). If \(p \in U_q \) for some \(q \in A \setminus X_0 \) then \(\sigma(1) \leq a \). By Lemma 7, \(h_D(I_\sigma) = \Gamma_D'(I_\sigma) = \Gamma_E(I_\sigma) \). Thus \(h_D(p) \subseteq V \) because \(h_E(U_q) \subseteq V \).

Therefore \(H(B) \in [H(A), V] \) and \(H \) is continuous. A similar argument shows that \(H^{-1} \) is continuous.

IV. Related results

Corollary 8. If \(X \) and \(Y \) are \(\omega \)-graphs and \(D \) and \(E \) are equipotent discrete subsets of \(X \) and \(Y \) respectively, then \(\bigcup_{p \in D}[p, X] \) is homeomorphic to \(\bigcup_{p \in E}[p, Y] \).
Proof. Extend D and E to dividing sets X_0 and Y_0 of X and Y. Order the sets X_0 and Y_0 so that $\lambda(D) = E$. Then the homeomorphism defined in the proof of Theorem 1 takes $\bigcup_{p \in D} [p, X]$ to $\bigcup_{p \in E} [p, Y]$, so these two sets are homeomorphic.

The finally results are about spaces other than graphs or ω-graphs. Theorem 2 of [N] shows that points may be removed from certain T_1 spaces without affecting its Pixley-Roy hyperspace. The next three lemmas generalize this result. Theorem 12 applies this procedure to \mathbb{R}^n.

Lemma 9. If $(Z_n : n < \omega)$ is a sequence of disjoint homeomorphic open and closed subsets of $\mathcal{PR}[X]$ such that $\bigcup_{n < \omega} Z_n$ is open and closed in $\mathcal{PR}[X]$, then $\mathcal{PR}[X] \setminus Z_0 \cong \mathcal{PR}[X]$.

Proof. For each $n < \omega$ let $H_n : Z_n \to Z_{n+1}$ be a homeomorphism. Define $H : \mathcal{PR}[X] \to \mathcal{PR}[X] \setminus Z_0$ by

$$H(A) = \begin{cases} A & \text{if } A \not\subseteq \bigcup_{n < \omega} Z_n, \\ H_n(A) & \text{if } A \in Z_n. \end{cases}$$

Then H is a homeomorphism.

Lemma 10. If U is an open subset of space X and C is closed in U then $\bigcup_{p \in C} [p, U]$ is open and closed in $\mathcal{PR}[X]$.

Proof. Clearly $\bigcup_{p \in C} [p, U]$ is an open subset of $\mathcal{PR}[X]$. Let

$$A \in U \setminus \bigcup_{p \in C} [p, U].$$

If $A \not\subseteq U$ then $[A, X]$ is a neighborhood of A that misses $\bigcup_{p \in C} [p, U]$. If $A \subseteq U$ then $A \cap C = \emptyset$, so $[A, U \setminus C]$ is a neighborhood of A in $\mathcal{PR}[X]$ that misses $\bigcup_{p \in C} [p, U]$.

Lemma 11. Let $(U_n : n < \omega)$ be a sequence of disjoint open subsets of a space X and let $(C_n : n < \omega)$ be a sequence of subsets of X such that $C_n \subseteq U_n$ and C_n is closed in U_n for all $n < \omega$. Then $\bigcup_{n < \omega} \bigcup_{p \in C_n} [p, U_n]$ is open and closed in $\mathcal{PR}[X]$.

Proof. It is clear that $\bigcup_{n < \omega} \bigcup_{p \in C_n} [p, U_n]$ is open in $\mathcal{PR}[X]$. By Lemma 10, each $\bigcup_{p \in C_n} [p, U_n]$ is closed in $\mathcal{PR}[X]$. Let $A \in \mathcal{PR}[X]$. Since A is finite and the U_n's are disjoint, there is a finite subset B of ω such that $A \cap U_n \neq \emptyset$ if and only if $n \in B$. Then $(\bigcup_{m \in B} [A, U_m]) \cap (\bigcup_{p \in U_n} [p, U_n]) \neq \emptyset$ only if $n \in B$. Thus $\{\bigcup_{p \in C_n} [p, U_n] : n < \omega\}$ is locally finite, and $\bigcup_{n < \omega} \bigcup_{p \in C_n} [p, U_n]$ is closed.

Theorem 12. Let $0 < n < \omega$ and let $X = \{\overline{x} \in \mathbb{R}^n : 0 < |\overline{x}| < 1\}$ where $|\overline{x}|$ denotes the Euclidean norm. For any $0 < m < \omega$,

$$\mathcal{PR}[\mathbb{R}^n] \cong \mathcal{PR}[m \times \mathbb{R}^n] \cong \mathcal{PR}[\omega \times \mathbb{R}^n] \cong \mathcal{PR}[m \times X] \cong \mathcal{PR}[\omega \times X].$$

Proof. We will show that each of these spaces is homeomorphic to $\mathcal{PR}[\mathbb{R}^n]$. Let D be a discrete subset of $\{x \in \mathbb{R} : x \geq 0\}$ which contains 0 and let $\pi : \mathbb{R}^n \to \mathbb{R}$
be the projection onto the first coordinate. Let \(L = \{ \vec{x} \in \mathbb{R}^n : \pi(\vec{x}) \in D \} \) and let \(C = \{ \vec{x} \in \mathbb{R}^n : |\vec{x}| \in D \}. \) If \(D \) is finite then \(\mathbb{R}^n \setminus L = (|D| + 1) \times \mathbb{R}^n \) and \(\mathbb{R}^n \setminus C = |D| \times X. \) If \(D \) is infinite then \(\mathbb{R}^n \setminus L \approx \omega \times \mathbb{R}^n \) and \(\mathbb{R}^n \setminus C \approx \omega \times X. \)

Let \(U_0 = \mathbb{R}^n \) and let \(\langle U_k : 0 < k < \omega \rangle \) be a sequence of disjoint open balls in \(\mathbb{R}^n, \) each of which has empty intersection with \(L \) and \(C. \)

Set \(C_0 = L. \) For every \(0 < k < \omega \) let \(C_k \) be a subset of \(U_k \) which is homeomorphic to \(L. \) Then \(C_k \) is closed in \(U_k \) for all \(k < \omega. \) For each \(k < \omega \) set \(Z_k = \bigcup_{p \in C_k} [p, U_k). \) By Lemma 10, each \(Z_k \) is open and closed in \(\text{PR}[\mathbb{R}^n]. \) By Lemma 11, \(\bigcup_{0 < k < \omega} Z_k \) is open and closed in \(\text{PR}[\mathbb{R}^n], \) so \(\bigcup_{k < \omega} Z_k \) is open and closed in \(\text{PR}[\mathbb{R}^n]. \) Clearly each \(Z_k \) is homeomorphic to every other \(Z_k, \) so \(\text{PR}[\mathbb{R}^n] \approx \text{PR}[\mathbb{R}^n] \setminus Z_0 \approx \text{PR}[\mathbb{R}^n \setminus L]. \) If \(D \) is finite then \(\text{PR}[\mathbb{R}^n] \approx \text{PR}[|D| + 1] \times \mathbb{R}^n]. \) If \(D \) is infinite then \(\text{PR}[\mathbb{R}^n] \approx \text{PR}[\omega \times \mathbb{R}^n]. \)

Now let \(C_0 = C \) and for every \(k < \omega \) let \(C_k \) be a subset of \(U_k \) homeomorphic to \(C. \) Set \(Z_k = \bigcup_{p \in C_k} [p, U_k] \) for all \(k < \omega. \) Again, \(\langle Z_k : k < \omega \rangle \) is a sequence of disjoint homeomorphic open and closed subsets of \(\text{PR}[\mathbb{R}^n] \) so \(\text{PR}[\mathbb{R}^n] \approx \text{PR}[\mathbb{R}^n] \setminus Z_0 \approx \text{PR}[\mathbb{R}^n \setminus C]. \) If \(D \) is finite then \(\text{PR}[\mathbb{R}^n] \approx \text{PR}[|D| \times X]. \) If \(D \) is infinite then \(\text{PR}[\mathbb{R}^n] \approx \text{PR}[\omega \times X]. \)

Bibliography

Department of Mathematics, University of Dayton, Dayton, Ohio 45469