Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On infinite root systems

Authors: R. V. Moody and A. Pianzola
Journal: Trans. Amer. Math. Soc. 315 (1989), 661-696
MSC: Primary 17B67
MathSciNet review: 964901
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We define in an axiomatic fashion the concept of a set of root data that generalizes the usual concept of root system of a Kac-Moody Lie algebra. We study these objects from a purely formal and geometrical point of view as well as in relation to their associated Lie algebras. This leads to a coherent theory of root systems, bases, subroot systems, Lie algebras defined by root data, and subalgebras.

References [Enhancements On Off] (What's this?)

  • [Bbk] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). MR 0240238
  • [Ctd] C. Caratheodory, Theory of functions, vol. 2, Chelsea, New York, 1960.
  • [Ctr] Roger W. Carter, Simple groups of Lie type, John Wiley & Sons, London-New York-Sydney, 1972. Pure and Applied Mathematics, Vol. 28. MR 0407163
  • [CS] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369
  • [Ddh] Vinay V. Deodhar, A note on subgroups generated by reflections in Coxeter groups, Arch. Math. (Basel) 53 (1989), no. 6, 543–546. MR 1023969, 10.1007/BF01199813
  • [Kac] Victor G. Kac, Infinite-dimensional Lie algebras, 2nd ed., Cambridge University Press, Cambridge, 1985. MR 823672
  • [KW] Victor G. Kac and Minoru Wakimoto, Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Nat. Acad. Sci. U.S.A. 85 (1988), no. 14, 4956–4960. MR 949675, 10.1073/pnas.85.14.4956
  • [Ljg] Eduard Looijenga, Invariant theory for generalized root systems, Invent. Math. 61 (1980), no. 1, 1–32. MR 587331, 10.1007/BF01389892
  • [Mdy] Robert V. Moody, Root systems of hyperbolic type, Adv. in Math. 33 (1979), no. 2, 144–160. MR 544847, 10.1016/S0001-8708(79)80003-1
  • [MP] Robert V. Moody and Arturo Pianzola, Lie algebras with triangular decompositions, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR 1323858
  • [MY] R. V. Moody and T. Yokonuma, Root systems and Cartan matrices, Canad. J. Math. 34 (1982), no. 1, 63–79. MR 650853, 10.4153/CJM-1982-007-x
  • [Rkf] R. T. Rockafellar, Convex analysis, Princeton Math. Ser., vol. 28, Princeton University Press, Princeton, N.J., 1970.
  • [Stn] Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR 0230728
  • [Vnb] È. B. Vinberg, Some arithmetical discrete groups in Lobačevskiĭ spaces, Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973) Oxford Univ. Press, Bombay, 1975, pp. 323–348. MR 0422505

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B67

Retrieve articles in all journals with MSC: 17B67

Additional Information

Article copyright: © Copyright 1989 American Mathematical Society