Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A Mandelbrot set whose boundary is piecewise smooth
HTML articles powered by AMS MathViewer

by M. F. Barnsley and D. P. Hardin PDF
Trans. Amer. Math. Soc. 315 (1989), 641-659 Request permission

Abstract:

It is proved that the Mandelbrot set associated with the pair of maps ${w_{1,2}}:{\mathbf {C}} \to {\mathbf {C}}, {w_1}(z) = sz + 1, {w_2}(z) = {s^\ast }z - 1$, with parameter $s \in {\mathbf {C}}$, is connected and has piecewise smooth boundary.
References
  • Benoit B. Mandelbrot, On the quadratic mapping $z\rightarrow z^{2}-\mu$ for complex $\mu$ and $z$: the fractal structure of its ${\cal M}$ set, and scaling, Phys. D 7 (1983), no. 1-3, 224–239. Order in chaos (Los Alamos, N.M., 1982). MR 719054, DOI 10.1016/0167-2789(83)90128-8
  • Adrien Douady and John Hamal Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 3, 123–126 (French, with English summary). MR 651802
  • A. Douady, Systèmes dynamique holomorphes, Sem. Bourbaki 35 (599) (1982/1983).
  • Mitchell J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Statist. Phys. 19 (1978), no. 1, 25–52. MR 501179, DOI 10.1007/BF01020332
  • M. F. Barnsley and A. N. Harrington, A Mandelbrot set for pairs of linear maps, Phys. D 15 (1985), no. 3, 421–432. MR 793899, DOI 10.1016/S0167-2789(85)80008-7
  • John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
  • M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A 399 (1985), no. 1817, 243–275. MR 799111
  • Benoit B. Mandelbrot, The fractal geometry of nature, Schriftenreihe für den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif., 1982. MR 665254
  • H. Yoshida, Self-similar natural boundaries of nonintegrable dynamical systems in the complex $t$ plane, Chaos and statistical methods (Kyoto, 1983) Springer Ser. Synergetics, vol. 24, Springer, Berlin, 1984, pp. 42–45. MR 771493, DOI 10.1007/978-3-642-69559-9_{5}
  • D. Bessis and N. Chafee, On the existence and non-existence of natural boundaries for non-intregrable dynamical systems, Chaotic Dynamics and Fractals (M. F. Barnsley and S. G. Demko, eds.), Academic Press, New York, 1985.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F08, 30D05
  • Retrieve articles in all journals with MSC: 58F08, 30D05
Additional Information
  • © Copyright 1989 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 315 (1989), 641-659
  • MSC: Primary 58F08; Secondary 30D05
  • DOI: https://doi.org/10.1090/S0002-9947-1989-1011232-6
  • MathSciNet review: 1011232