Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Quantization of curvature of harmonic two-spheres in Grassmann manifolds

Author: Yunbo Zheng
Journal: Trans. Amer. Math. Soc. 316 (1989), 193-214
MSC: Primary 58E20; Secondary 53C42
MathSciNet review: 935535
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Various pinching theorems for curvature of minimal two-spheres in Grassmann manifolds have been proved. In particular, we show that when the curvature is large, then the minimal map from $ {S^2}$ into $ G(m,N)$ must be either holomorphic or antiholomorphic. Also, minimal two-spheres of curvature $ \kappa \geqslant 2$ in $ G(2,4)$ have been classified.

References [Enhancements On Off] (What's this?)

  • [BJRW] J. Bolton, G. R. Jense, M. Rigoli, and L. M. Woodward, On conformal minimal immersions of $ {S^2}$ into $ C{P^n}$, Math. Ann. 279 (1988), 599-620. MR 926423 (88m:53110)
  • [BRS] F. Burstall, J. Rawnsley and S. Salamon, Stable harmonic $ 2$-spheres in symmetric spaces, Bull. Amer. Math. Soc. 16 (1987), 274-278. MR 876963 (88e:58024)
  • [CW] S. S. Chern and J. G. Wolfson, Harmonic maps of the two-sphere into a complex Grassmann manifold. II, Ann. of Math. 125 (1987), 301-335. MR 881271 (88g:58038)
  • [CZ] Q. Chi and Y. Zheng, Rigidity of pseudo-holomorphic curves of constant curvature in Grassmann manifolds, Trans. Amer. Math. Soc. 313 (1989), 393-406. MR 992602 (90m:53072)
  • [DZ] A. M. Din and W. J. Zakrzewski, General classical solutions in the $ C{P^{n - 1}}$ model, Nuclear Phys. B 174 (1980), 397-406. MR 591620 (82f:81041)
  • [EW] J. Elles and J. C. Wood, Harmonic maps from surfaces to complex projective spaces, Adv. in Math. 49 (1983), 217-263. MR 716372 (85f:58029)
  • [EGT] J. H. Eschenburg, I. V. Guadalupe and R. Tribuzy, The fundamental equation of minimal surfaces in $ C{P^2}$, Math. Ann. 270 (1985), 571-598. MR 776173 (86m:58041)
  • [Ra] J. Ramanathan, Harmonic maps from $ {S^2}$ to $ G(2,4)$, J. Differential Geometry 19 (1984), 207-219. MR 739787 (86f:58039)
  • [R] M. Rigoli, A rigidity result for holomorphic emmersions of surfaces in $ C{P^n}$, Proc. Amer. Math. Soc. 93 (1985), 317-320. MR 770544 (87b:53092)
  • [Z] Y. Zheng, Harmonic maps into Grassmann manifolds, Washington Univ. Thesis, 1987.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58E20, 53C42

Retrieve articles in all journals with MSC: 58E20, 53C42

Additional Information

Keywords: Harmonic maps, pseudoholomorphic, pinching
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society