Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Complemented subspaces of products of Banach spaces


Authors: Paweł Domański and Augustyn Ortyński
Journal: Trans. Amer. Math. Soc. 316 (1989), 215-231
MSC: Primary 46A05; Secondary 46A45, 46B99, 46M99
DOI: https://doi.org/10.1090/S0002-9947-1989-0937243-4
MathSciNet review: 937243
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that: (i) every complemented subspace in an infinite product of $ {L_1}$-predual Banach spaces $ \prod\nolimits_{i \in I} {{X_i}} $ is isomorphic to $ Z \times {{\mathbf{K}}^\mathfrak{m}}$, where $ \dim {\mathbf{K}} = 1,\;\mathfrak{m} \leqslant \operatorname{card} I$ and $ Z$ is isomorphic to a complemented subspace of $ \prod\nolimits_{i \in J} {{X_i},\;J \subseteq I,\;Z} $ contains an isomorphic cop[ill] of $ c_0^{\operatorname{card} J}$; (ii) every injective lcs (in particular, Fréchet) is of the form $ Z \times {{\mathbf{K}}^\mathfrak{m}},\;\dim {\mathbf{K}} = 1$, where $ Z$ has a fundamental family of seminorms of the cardinality $ \tau $ and $ Z$ contains an isomorphic copy of $ l_\infty ^\mathfrak{r}$ (this is a generalization of Lindenstrauss' theorem on injective Banach spaces); (iii) whenever $ X \simeq {l_p},\;1 \leqslant p \leqslant \infty $, or $ X \simeq {c_0}$, then every complemented subspace in a power $ {X^\mathfrak{m}}$ ( $ \mathfrak{m}$ is an arbitrary cardinal number) is isomorphic to $ {X^\mathfrak{r}} \times {{\mathbf{K}}^\mathfrak{s}},\;\mathfrak{r} + s \leqslant \mathfrak{m}$ (a generalization of the results due to Lindenstrauss and Pełczyński for $ \mathfrak{m} = 1$).


References [Enhancements On Off] (What's this?)

  • [1] S. Bellenot and E. Dubinsky, Fréchet spaces with nuclear Köthe quotients, Trans. Amer. Math. Soc. 273 (1982), 579-594. MR 667161 (84g:46002)
  • [2] M. DeWilde, Sur le relevement des parties bornées d'un quotient d'espaces vectoriels topologiques, Bull. Soc. Roy. Sci. Liège 43 (1974), 299-301. MR 0355513 (50:7987)
  • [3] J. Diestel and R. H. Lohman, Applications of mapping theorems to Schwartz spaces and projections, Michigan Math. J. 20 (1973), 39-44. MR 0316993 (47:5541)
  • [4] P. Domański, On the separable topological vector spaces, Funct. Approx. 14 (1984), 117-122. MR 817350 (87f:46009)
  • [5] -, Twisted sums of Banach and nuclear spaces, Proc. Amer. Math. Soc. 97 (1986), 237-243. MR 835872 (87j:46012)
  • [6] L. Drewnowski, Another note on Kalton's theorem, Studia Math. 52 (1975), 233-237. MR 0360986 (50:13433)
  • [7] R. Engelking, General topology, Monogr. Mat. 60, PWN, Warsaw, 1977. MR 0500780 (58:18316b)
  • [8] M. G. Garnir, M. DeWilde and J. Schmets, Analyse fonctionnelle, Birkhäuser-Verlag, Basel and Stuttgart, 1968.
  • [9] A. Grothendieck, Sur les espaces $ (F)$ et $ (DF)$, Summa Brazil. Math. 3 (1954), 57-122. MR 0075542 (17:765b)
  • [10] H. J. Junek, Locally convex spaces and operator ideals, Texts in Math. 68, Teubner, Leipzig, 1983. MR 758254 (86b:46002)
  • [11] G. Köthe, Topological vector spaces, vol. I, Springer-Verlag, Berlin, Heildelberg and New York, 1969.
  • [12 J] Lindenstrauss and L. Tzafriri, Classical Banach spaces, Lecture Notes in Math., vol. 338, Springer-Verlag, 1973. MR 0415253 (54:3344)
  • [13] -, Classical Banach spaces, vol. I, Springer-Verlag, Berlin Heildenberg, and New York, 1977.
  • [14] R. Meise and D. Vogt, A characterization of the quasi-normable Fréchet spaces, Mat. Nachr. 122 (1985), 141-150. MR 871197 (88e:46002)
  • [15] V. P. Palamodov, Homological methods in the theory of locally convex spaces, Uspehi Mat. Nauk 26 (1971), 3-66; English transl., Russian Math. Surveys 26 (1971), 1-64. MR 0293365 (45:2442)
  • [16] Open problem presented at the Ninth Seminar Poland-GDR on Operator Ideals and Geometry of Banach Spaces, Georgenthal, April 1986, communicated by A. Pietsch, Forschungsergebnisse Friedrich-Schiller Universität Jena, Jena, 1988.
  • [17] W. Sierpiński, Cardinal and ordinal numbers, Monogr. Mat. 34, PWN, Warsaw, 1958.
  • [18] D. Vogt, Some results on continuous linear maps between Fréchet spaces, Functional Analysis: Surveys and Recent Results. III (K.-D. Bierstedt and B. Fuchssteiner, eds.), North-Holland Studies in Math. 90, North-Holland, 1984, pp. 349-381. MR 761391 (86i:46075)
  • [19] M. Zippin, The separable extension problem, Israel J. Math. 26 (1977), 372-387. MR 0442649 (56:1030)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A05, 46A45, 46B99, 46M99

Retrieve articles in all journals with MSC: 46A05, 46A45, 46B99, 46M99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0937243-4
Keywords: Complemented subspaces, injective spaces, $ {L_1}$-preduals, the Dunford-Pettis property, products of Banach spaces, locally convex spaces
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society