Additive cohomology operations

Author:
Jeanne Duflot

Journal:
Trans. Amer. Math. Soc. **316** (1989), 311-325

MSC:
Primary 55S05

DOI:
https://doi.org/10.1090/S0002-9947-1989-0942425-1

MathSciNet review:
942425

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The bigraded group becomes a Hopf algebra, if multiplication is induced by restriction, and comultiplication is induced by transfer. Using Steenrod's method of considering elements of this bigraded group as cohomology operations, the primitives of this Hopf algebra correspond to additive cohomology operations. In this paper we use the results known about the homology and cohomology of the symmetric groups and the operations they induce in cohomology to write down two (additive) bases of the bigraded vector space of primitives of the above Hopf algebra.

**[1]**M. F. Atiyah,*Power operations in 𝐾-theory*, Quart. J. Math. Oxford Ser. (2)**17**(1966), 165–193. MR**0202130**, https://doi.org/10.1093/qmath/17.1.165**[2]**H. Cartan, Séminaire H. Cartan 1954-1955, Paris.**[3]**Jeanne Duflot,*A Hopf algebra associated to the cohomology of the symmetric groups*, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 171–186. MR**933409****[4]**Leonard Evens,*The cohomology ring of a finite group*, Trans. Amer. Math. Soc.**101**(1961), 224–239. MR**0137742**, https://doi.org/10.1090/S0002-9947-1961-0137742-1**[5]**N. H. V. Hung,*The**cohomology algebras of symmetric groups*, Japan J. Math.**13**(1987), 169-208.**[6]**-,*The**cohomology algebras of symmetric groups*, preprint.**[7]**Daniel S. Kahn and Stewart B. Priddy,*On the transfer in the homology of symmetric groups*, Math. Proc. Cambridge Philos. Soc.**83**(1978), no. 1, 91–101. MR**0464229**, https://doi.org/10.1017/S0305004100054323**[8]**Arunas Liulevicius,*Arrows, symmetries and representation rings*, J. Pure Appl. Algebra**19**(1980), 259–273. MR**593256**, https://doi.org/10.1016/0022-4049(80)90103-6**[9]**Ib Madsen,*On the action of the Dyer-Lashof algebra in 𝐻_{∗}(𝐺)*, Pacific J. Math.**60**(1975), no. 1, 235–275. MR**0388392****[10]**Ib Madsen and R. James Milgram,*The classifying spaces for surgery and cobordism of manifolds*, Annals of Mathematics Studies, vol. 92, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. MR**548575****[11]**Benjamin Michael Mann,*The cohomology of the symmetric groups*, Trans. Amer. Math. Soc.**242**(1978), 157–184. MR**0500961**, https://doi.org/10.1090/S0002-9947-1978-0500961-9**[12]**J. P. May,*The homology of**spaces*, Lecture Notes in Math., vol. 533, Springer-Verlag, 1976, pp. 1-68.**[13]**J. McClure,*Power operations in*-*ring theories*, Lecture Notes in Math., vol. 1176, Springer-Verlag, 1986, pp. 249-290.**[14]**John Milnor,*The Steenrod algebra and its dual*, Ann. of Math. (2)**67**(1958), 150–171. MR**0099653**, https://doi.org/10.2307/1969932**[15]**John W. Milnor and John C. Moore,*On the structure of Hopf algebras*, Ann. of Math. (2)**81**(1965), 211–264. MR**0174052**, https://doi.org/10.2307/1970615**[16]**Huá»³nh Mui,*Modular invariant theory and cohomology algebras of symmetric groups*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**22**(1975), no. 3, 319–369. MR**0422451****[17]**-,*Cohomology operations derived from the modular invariants*, preprint.**[18]**-,*Dickson invariants and the Milnor basis of the Steenrod algebra*, preprint.**[19]**Minoru Nakaoka,*Homology of the infinite symmetric group*, Ann. of Math. (2)**73**(1961), 229–257. MR**0131874**, https://doi.org/10.2307/1970333**[20]**Minoru Nakaoka,*Note on cohomology algebras of symmetric groups*, J. Math. Osaka City Univ.**13**(1962), 45–55. MR**0154905****[21]**N. E. Steenrod,*Homology groups of symmetric groups and reduced power operations*, Proc. Nat. Acad. Sci. U. S. A.**39**(1953), 213–217. MR**0054964**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55S05

Retrieve articles in all journals with MSC: 55S05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1989-0942425-1

Article copyright:
© Copyright 1989
American Mathematical Society