Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Additive cohomology operations


Author: Jeanne Duflot
Journal: Trans. Amer. Math. Soc. 316 (1989), 311-325
MSC: Primary 55S05
DOI: https://doi.org/10.1090/S0002-9947-1989-0942425-1
MathSciNet review: 942425
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The bigraded group $ \{ {H_i}({\Sigma _n},{\mathbf{Z}}/p)\} $ becomes a Hopf algebra, if multiplication is induced by restriction, and comultiplication is induced by transfer. Using Steenrod's method of considering elements of this bigraded group as $ \bmod {\text{ - }}p$ cohomology operations, the primitives of this Hopf algebra correspond to additive cohomology operations. In this paper we use the results known about the homology and cohomology of the symmetric groups and the operations they induce in $ \bmod {\text{ - }}p$ cohomology to write down two (additive) bases of the bigraded vector space of primitives of the above Hopf algebra.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, Power operations in $ K$-theory, Quart. J. Math. (2) 17 (1966), 165-193. MR 0202130 (34:2004)
  • [2] H. Cartan, Séminaire H. Cartan 1954-1955, Paris.
  • [3] J. Duflot, A Hopf algebra associated to the cohomology of the symmetric groups, Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, R.I., 1987, pp. 171-186. MR 933409 (90a:20107)
  • [4] L. Evens, The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224-239. MR 0137742 (25:1191)
  • [5] N. H. V. Hung, The $ \bmod {\text{ - }}2$ cohomology algebras of symmetric groups, Japan J. Math. 13 (1987), 169-208.
  • [6] -, The $ \bmod {\text{ - }}p$ cohomology algebras of symmetric groups, preprint.
  • [7] D. S. Kahn and S. B. Priddy, On the transfer in the homology of the symmetric groups, Math. Proc. Cambridge Philos. Soc. 83 (1978), 91-101. MR 0464229 (57:4164a)
  • [8] A. Liulevicius, Arrows, symmetries and representatiosn rings, J. Pure Appl. Algebra 19 (1980), 259-273. MR 593256 (82j:16020)
  • [9] I. Madsen, On the action of the Dyer-Lashof algebra in $ {H_{\ast}}(G)$, Pacific J. Math. 60 (1975), 235-275. MR 0388392 (52:9228)
  • [10] I. Madsen and R. J. Milgram, The classifying spaces for surgery and cobordism of manifolds, Ann. of Math. Studies, no. 92, Princeton Univ. Press, 1979. MR 548575 (81b:57014)
  • [11] B. M. Mann, The cohomology of the symmetric groups, Trans. Amer. Math. Soc. 242 (1978), 157-183. MR 0500961 (58:18447)
  • [12] J. P. May, The homology of $ {E_\infty }$ spaces, Lecture Notes in Math., vol. 533, Springer-Verlag, 1976, pp. 1-68.
  • [13] J. McClure, Power operations in $ {H^d}$-ring theories, Lecture Notes in Math., vol. 1176, Springer-Verlag, 1986, pp. 249-290.
  • [14] J. Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150-171. MR 0099653 (20:6092)
  • [15] J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264. MR 0174052 (30:4259)
  • [16] H. Mui, Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo 22 (1975), 319-369. MR 0422451 (54:10440)
  • [17] -, Cohomology operations derived from the modular invariants, preprint.
  • [18] -, Dickson invariants and the Milnor basis of the Steenrod algebra, preprint.
  • [19] M. Nakaoka, Homology of the infinite symmetric group, Ann. of Math. 73 (1981), 228-257. MR 0131874 (24:A1721)
  • [20] -, Note on cohomology algebras of symmetric groups, J. Math. Osaka City Univ. 13 (1962), 45-55. MR 0154905 (27:4849)
  • [21] N. E. Steenrod, Homology groups of symmetric groups and reduced power operations, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 213-223. MR 0054964 (14:1005d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55S05

Retrieve articles in all journals with MSC: 55S05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0942425-1
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society