Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On some limit theorems for continued fractions


Author: Jorge D. Samur
Journal: Trans. Amer. Math. Soc. 316 (1989), 53-79
MSC: Primary 60F05
MathSciNet review: 948197
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: As a consequence of previous results on mixing random variables, some functional limit theorems for quantities related to the continued fraction expansion of a random number in $ (0,1)$ are given.


References [Enhancements On Off] (What's this?)

  • [1] Alejandro de Acosta, Invariance principles in probability for triangular arrays of 𝐵-valued random vectors and some applications, Ann. Probab. 10 (1982), no. 2, 346–373. MR 647509
  • [2] Aloisio Araujo and Evarist Giné, The central limit theorem for real and Banach valued random variables, John Wiley & Sons, New York-Chichester-Brisbane, 1980. Wiley Series in Probability and Mathematical Statistics. MR 576407
  • [3] H. Bergström, On the convergence of sums of random variables in distribution under mixing condition, Period. Math. Hungar. 2 (1972), 173–190. Collection of articles dedicated to the memory of Alfréd Rényi, I. MR 0350814
  • [4] Patrick Billingsley, Ergodic theory and information, John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR 0192027
  • [5] Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
  • [6] Richard C. Bradley, Basic properties of strong mixing conditions, Dependence in probability and statistics (Oberwolfach, 1985) Progr. Probab. Statist., vol. 11, Birkhäuser Boston, Boston, MA, 1986, pp. 165–192. MR 899990
  • [7] W. Doeblin, Remarques sur la théorie métrique des fractions continues, Compositio Math. 7 (1940), 353–371 (French). MR 0002732
  • [8] János Galambos, The distribution of the largest coefficient in continued fraction expansions, Quart. J. Math. Oxford Ser. (2) 23 (1972), 147–151. MR 0299576
  • [9] Ĭ. Ī. Gīhman and A. V. Skorohod, The theory of stochastic processes. II, Springer-Verlag, New York-Heidelberg, 1975. Translated from the Russian by Samuel Kotz; Die Grundlehren der Mathematischen Wissenschaften, Band 218. MR 0375463
  • [10] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Clarendon Press, Oxford, 1960.
  • [11] I. A. Ibragimov, Some limit theorems for stationary processes, Teor. Verojatnost. i Primenen. 7 (1962), 361–392 (Russian, with English summary). MR 0148125
  • [12] I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman. MR 0322926
  • [13] Marius Iosifescu, A Poisson law for 𝜓-mixing sequences establishing the truth of a Doeblin’s statement, Rev. Roumaine Math. Pures Appl. 22 (1977), no. 10, 1441–1447. MR 0466053
  • [14] A. Khintchine, Metrische Kettenbruchprobleme, Compositio Math. 1 (1935), 361–382 (German). MR 1556899
  • [15] Donald E. Knuth, The distribution of continued fraction approximations, J. Number Theory 19 (1984), no. 3, 443–448. MR 769794, 10.1016/0022-314X(84)90083-0
  • [16] Henry A. Krieger, A new look at Bergström’s theorem on convergence in distribution for sums of dependent random variables, Israel J. Math. 47 (1984), no. 1, 32–64. MR 736063, 10.1007/BF02760561
  • [17] Serge Lang, Introduction to diophantine approximations, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0209227
  • [18] Paul Lévy, Fractions continues aléatoires, Rend. Circ. Mat. Palermo (2) 1 (1952), 170–208 (French). MR 0066583
  • [19] -, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1954.
  • [20] Walter Philipp, Some metrical theorems in number theory. II, Duke Math. J. 37 (1970), 447–458. MR 0272739
  • [21] Walter Philipp, Mixing sequences of random variables and probablistic number theory, American Mathematical Society, Providence, R. I., 1971. Memoirs of the American Mathematical Society, No. 114. MR 0437481
  • [22] -, Weak and $ {L^p}$-invariance principles for sums of $ B$-valued random variables, Ann. Probab. 8 (1980), 68-82. Correction ibid. 14 (1986), 1095-1101.
  • [23] Walter Philipp, Limit theorems for sums of partial quotients of continued fractions, Monatsh. Math. 105 (1988), no. 3, 195–206. MR 939942, 10.1007/BF01636928
  • [24] Jorge D. Samur, Convergence of sums of mixing triangular arrays of random vectors with stationary rows, Ann. Probab. 12 (1984), no. 2, 390–426. MR 735845
  • [25] -, A note on the convergence to Gaussian laws of sums of stationary $ \phi $-mixing triangular arrays, Proc. Probability in Banach Spaces. V, Lecture Notes in Math., vol. 1153, Springer-Verlag, Berlin, 1985, pp. 387-399.
  • [26] Jorge D. Samur, On the invariance principle for stationary 𝜑-mixing triangular arrays with infinitely divisible limits, Probab. Theory Related Fields 75 (1987), no. 2, 245–259. MR 885465, 10.1007/BF00354036
  • [27] Eugene Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-New York, 1976. MR 0453936

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60F05

Retrieve articles in all journals with MSC: 60F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0948197-9
Keywords: Continued fraction expansion, mixing random variables, functional limit theorem, invariance principle, regularly varying function, approximation by convergents
Article copyright: © Copyright 1989 American Mathematical Society