Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multiplicity of the adjoint representation in simple quotients of the enveloping algebra of a simple Lie algebra


Author: Anthony Joseph
Journal: Trans. Amer. Math. Soc. 316 (1989), 447-491
MSC: Primary 17B35; Secondary 22E47
DOI: https://doi.org/10.1090/S0002-9947-1989-1020500-3
MathSciNet review: 1020500
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathfrak{g}$ be a complex simple Lie algebra, $ \mathfrak{h}$ a Cartan subalgebra and $ U(\mathfrak{g})$ the enveloping algebra of $ \mathfrak{g}$. We calculate for each maximal two-sided ideal $ {J_{\max }}(\lambda ):\lambda \in {\mathfrak{h}^{\ast}}$ of $ U(\mathfrak{g})$ the number of times the adjoint representation occurs in $ U(\mathfrak{g})/{J_{\max }}(\lambda )$. This is achieved by reduction via the Kazhdan-Lusztig polynomials to the case when $ \lambda $ lies on a corner, i.e. is a multiple of a fundamental weight. Remarkably in this case one can always present $ U(\mathfrak{g})/{J_{\max }}(\lambda )$ as a (generalized) principal series module and here we also calculate its Goldie rank as a ring which is a question of independent interest. For some of the more intransigent cases it was necessary to use recent very precise results of Lusztig on left cells. The results are used to show how a recent theorem of Gupta established for "nonspecial" $ \lambda $ can fail if $ \lambda $ is singular. Finally we give a quite efficient procedure for testing if an induced ideal is maximal.


References [Enhancements On Off] (What's this?)

  • [1] D. Barbasch and D. Vogan, Primitive ideals and orbital integrals in complex classical groups, Math. Ann. 259 (1982), 153-199. MR 656661 (83m:22026)
  • [2] -, Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra 80 (1983), 350-382. MR 691809 (84h:22038)
  • [3] W. M. Beynon and G. Lusztig, Some numerical results on characters of exceptional Weyl groups, Math. Proc. Cambridge Philos. Soc. 84 (1978), 417-426. MR 503002 (80a:20017)
  • [4] W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces. I, Invent. Math. 69 (1982), 437-476. MR 679767 (84b:17007)
  • [5] W. Borho and J.-C. Jantzen, Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra, Invent. Math. 39 (1977), 1-53. MR 0453826 (56:12079)
  • [6] W. Borho and R. MacPherson, Partial resolutions of nilpotent varieties, Astérisque 101 (1983), 23-74. MR 737927 (85j:14087)
  • [7] N. Bourbaki, Groupes et algèbres de Lie, Chaps. IV-VI, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [8] R. W. Carter, Finite groups of Lie type, Wiley, New York, 1985. MR 794307 (87d:20060)
  • [9] N. Conze-Berline and M. Duflo, Sur les représentations induites des groupes semi-simples complexes, Compositio Math. 34 (1977), 307-336. MR 0439991 (55:12872)
  • [10] J. Dixmier, Enveloping algebras, North-Holland, Amsterdam, 1977. MR 0498740 (58:16803b)
  • [11] O. Gabber and A. Joseph, On the Bernstein-Gelfand-Gelfand resolution and the Duflo sum formula, Compositio Math. 43 (1981), 107-131. MR 631430 (82k:17009)
  • [12] R. K. Gupta, Copies of the adjoint representation inside induced ideals, preprint, Paris, 1985.
  • [13] R. Hotta, On Joseph's construction of Weyl group representations, Tôhoku Math. J. 36 (1984), 49-74. MR 733619 (86h:20061)
  • [14] J.-C. Jantzen, Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren, Math. Ann. 226 (1977), 53-65. MR 0439902 (55:12783)
  • [15] -, Moduln mit einem hochsten Gewicht, Lecture Notes in Math., vol. 750, Springer-Verlag, Berlin and New York, 1979. MR 552943 (81m:17011)
  • [16] -, Einhullende Algebren halbeinfacher Lie-Algebren, Springer-Verlag, Berlin, 1983. MR 721170 (86c:17011)
  • [17] A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. Ecole Norm. Sup. 9 (1976), 1-30. MR 0404366 (53:8168)
  • [18] -, Goldie rank in the enveloping algebra of a semi-simple Lie algebra. I, II, III, J. Algebra 65 (1980), 269-283; 284-306; 73 (1981), 295-326.
  • [19] -, Kostant's problem, Goldie rank and the Gelfand-Kirillov conjecture, Invent. Math. 56 (1980), 191-213. MR 561970 (82f:17008)
  • [20] -, On the variety of a highest weight module, J. Algebra 88 (1984), 238-278. MR 741942 (85j:17014)
  • [21] -, On the associated variety of a primitive ideal, J. Algebra 93 (1985), 509-523. MR 786766 (86m:17014)
  • [22] -, On the cyclicity of vectors associated with Duflo involutions, Non-Commutative Harmonic Analysis, Lecture Notes in Math., vol. 1243, Springer-Verlag, Berlin, 1987, pp. 145-188. MR 897541 (88j:17008)
  • [23] -, A criterion for an ideal to be induced, J. Algebra 110 (1987), 480-497. MR 910397 (88m:17011)
  • [24] -, Dixmier's problem for Verma and principal series submodules, J. London Math. Soc. 20 (1979), 193-204. MR 551445 (81c:17016)
  • [25] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), 125-175. MR 0463275 (57:3228)
  • [26] -, A class of irreducible representations of a Weyl group. I, II, Proc. Kon. Nederl. Akad. A82 (1979), 323-335; A85 (1982), 219-226. MR 546372 (81a:20052)
  • [27] -, Characters of reductive groups over a finite field, Ann. of Math. Studies, no. 107, Princeton Univ. Press, Princeton, N.J., 1984. MR 742472 (86j:20038)
  • [28] -, Sur les cellules gauches des groupes de Weyl, C. R. Acad. Sci. Paris 302 (1986), 5-8. MR 827096 (87e:20089)
  • [29] G. Lusztig and N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. (2) 19 (1979), 41-52. MR 527733 (82g:20070)
  • [30] I. G. Macdonald, Some irreducible representations of the Weyl groups, Bull. London Math. Soc. 4 (1972), 148-150. MR 0320171 (47:8710)
  • [31] N. Spaltenstein, On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology 16 (1977), 203-204. MR 0447423 (56:5735)
  • [32] T. Tanisaki, Private communication.
  • [33] A. Joseph, Completion functors in the $ \mathfrak{D}$ category, Lecture Notes in Math., vol. 1020, Springer-Verlag, Berlin and New York, 1983, pp. 80-106. MR 733462 (85i:17012)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B35, 22E47

Retrieve articles in all journals with MSC: 17B35, 22E47


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-1020500-3
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society