Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Topological equivalence of foliations of homogeneous spaces

Author: Dave Witte
Journal: Trans. Amer. Math. Soc. 317 (1990), 143-166
MSC: Primary 22E40; Secondary 57R30, 58F18
MathSciNet review: 942428
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For $ i = 1,2$, let $ {\Gamma _i}$ be a lattice in a connected Lie group $ {G_i}$, and let $ {X_i}$ be a connected Lie subgroup of $ {G_i}$. The double cosets $ {\Gamma _i}g{X_i}$ provide a foliation $ {\mathcal{F}_i}$ of the homogeneous space $ {\Gamma _i}\backslash {G_i}$. Assume that $ {X_1}$ and $ {X_2}$ are unimodular and that $ {\mathcal{F}_1}$ has a dense leaf. If $ {G_1}$ and $ {G_2}$ are semisimple groups to which the Mostow Rigidity Theorem applies, or are simply connected nilpotent groups (or are certain more general solvable groups), we use an idea of D. Benardete to show that any topological equivalence of $ {\mathcal{F}_1}$ and $ {\mathcal{F}_2}$ must be the composition of two very elementary maps: an affine map and a map that takes each leaf to itself.

References [Enhancements On Off] (What's this?)

  • [1] D. V. Anosov (translated by S. Feder), Geodesic flows on closed Riemann manifolds with negative curvature (Proc. Steklov Inst. Math., no. 90), Amer. Math. Soc., Providence, R.I., 1969. MR 0242194 (39:3527)
  • [2] W. Baily, Introductory lectures on automorphic forms, Princeton University Press, Princeton, N.J., 1973. MR 0369750 (51:5982)
  • [3] D. Benardete, Topological equivalence of flows on homogeneous spaces, and divergence of one-parameter subgroups of Lie groups, Trans. Amer. Math. Soc. 306 (1988), 499-527. MR 933304 (89k:58248)
  • [4] I. P. Cornfeld, S. V. Fomin, and Y. G. Sinai, Ergodic theory, Springer-Verlag, New York, 1982. MR 832433 (87f:28019)
  • [5] V. V. Gorbacevič, Lattices in solvable Lie groups and deformations of homogeneous spaces, Math. USSR-Sb. 20 (1973), 249-266=Mat. Sb. (N.S.) 91(133) (1973), 233-252, 288. MR 0352329 (50:4816)
  • [6] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978. MR 514561 (80k:53081)
  • [7] M. Hirsch and S. Smale, Differential equations, dynamical systems, and linear algebra, Academic Press, New York, 1974. MR 0486784 (58:6484)
  • [8] G. P. Hochschild, Basic theory of algebraic groups and Lie algebras, Springer-Verlag, New York, 1981. MR 620024 (82i:20002)
  • [9] J. E. Humphreys, Linear algebraic groups, Springer-Verlag, New York, 1975. MR 0396773 (53:633)
  • [10] B. Marcus, Topological conjugacy of horocycle flows, Amer. J. Math. 105 (1983), 623-632. MR 704217 (85b:58103)
  • [11] C. C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154-178. MR 0193188 (33:1409)
  • [12] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Studies, no. 78, Princeton Univ. Press, Princeton, N.J., 1973. MR 0385004 (52:5874)
  • [13] G. Prasad, Strong rigidity of $ {\mathbf{Q}}$-rank $ 1$ lattices, Invent. Math. 21 (1973), 255-286. MR 0385005 (52:5875)
  • [14] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York, 1972. MR 0507234 (58:22394a)
  • [15] M. Ratner, Ergodic theory in hyperbolic space, Conference in Modern Analysis and Probability (New Haven, Conn., 1982), Contemp. Math., vol. 26 (R. Beals, A. Beck, A. Bellow, and A. Hajian, eds.), Amer. Math. Soc., Providence, R.I., 1984, pp. 309-334. MR 737411 (85h:58140)
  • [16] M. Saito, Sur certains groupes de Lie résolubles II, Sci. Papers Coll. Gen. Ed. Univ. Tokyo 7 (1957), 157-168. MR 0097463 (20:3932)
  • [17] V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall, Englewood Cliffs, N.J., 1974. MR 0376938 (51:13113)
  • [18] R. J. Zimmer, Ergodic theory and semisimple groups, Birkhäuser, Boston, Mass., 1984. MR 776417 (86j:22014)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E40, 57R30, 58F18

Retrieve articles in all journals with MSC: 22E40, 57R30, 58F18

Additional Information

Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society