Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Centers of generic Hecke algebras
HTML articles powered by AMS MathViewer

by Lenny K. Jones PDF
Trans. Amer. Math. Soc. 317 (1990), 361-392 Request permission

Abstract:

Let $W$ be a Weyl group and let $W’$ be a parabolic subgroup of $W$. Define $A$ as follows: \[ A = R{ \otimes _{{\mathbf {Q}}[u]}}\mathcal {A}(W)\] where $\mathcal {A}(W)$ is the generic algebra of type ${A_n}$ over ${\mathbf {Q}}[u]$ an indeterminate, associated with the group $W$, and $R$ is a ${\mathbf {Q}}[u]$-algebra, possibly of infinite rank, in which $u$ is invertible. Similarly, we define $A’$ associated with $W’$. Let $M$ be an $A - A$ bimodule, and let $b \in M$. Define the relative norm [14] \[ {N_{W,W’}}(b) = \sum \limits _{t \in T} {{u^{ - l(t)}}{a_{{t^{ - 1}}}}b{a_t}} \] where $T$ is the set of distinguished right coset representives for $W’$ in $W$. We show that if $b \in {Z_M}(A’) = \{ m \in M|ma’ = a’m\quad \forall a’ \in A’\}$, then ${N_{W,W’}}(b) \in {Z_M}(A)$. In addition, other properties of the relative norm are given and used to develop a theory of induced modules for generic Hecke algebras including a Markey decomposition. This section of the paper is previously unpublished work of P. Hoefsmit and L. L. Scott. Let $\alpha = ({k_1},{k_2}, \ldots ,{k_z})$ be a partition of $n$ and let ${S_\alpha } = \Pi _{i = 1}^Z{S_{{k_i}}}$ be a "left-justified" parabolic subgroup of ${S_n}$ of shape $\alpha$. Define \[ {b_\alpha } = {N_{{S_n},{S_\alpha }}}({\mathcal {N}_\alpha })\], where \[ {\mathcal {N}_\alpha } = \prod \limits _{i = 1}^z {{N_{{S_{{k_i} - 1}},{S_1}}}({a_{{w_i}}})} \] with ${w_i}$ a ${k_i}$-cycle of length ${k_i} - 1$ in ${S_{{k_i}}}$. Then the main result of this paper is Theorem. The set $\{ {b_\alpha }|\alpha \vdash n\}$ is a basis for ${Z_{A({S_n})}}(A({S_n}))$ over ${\mathbf {Q}}[u,{u^{ - 1}}]$. Remark. The norms ${b_\alpha }$ in ${Z_{A({S_n})}}(A({S_n}))$ are analogs of conjugacy class sums in the center of ${\mathbf {Q}}{S_n}$ and, in fact, specialization of these norms at $u = 1$ gives the standard conjugacy class sum basis of the center of ${\mathbf {Q}}{S_n}$ up to coefficients from ${\mathbf {Q}}$.
References
  • Michael Aschbacher, Finite group theory, Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 1986. MR 895134
  • N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
  • Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
  • Charles W. Curtis, Representations of finite groups of Lie type, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 5, 721–757. MR 537625, DOI 10.1090/S0273-0979-1979-14648-2
  • Charles W. Curtis, On Lusztig’s isomorphism theorem for Hecke algebras, J. Algebra 92 (1985), no. 2, 348–365. MR 778453, DOI 10.1016/0021-8693(85)90125-5
  • —, Representation theory notes from a course given at the University of Virginia in 1975.
  • C. W. Curtis, N. Iwahori, and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with $(B,$ $N)$-pairs, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 81–116. MR 347996
  • Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
  • Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
  • Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. II, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 892316
  • C. W. Curtis and L. L. Scott, unpublished work, 1974.
  • Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
  • P. Hoefsmit, Representations of Hecke algebras of finite groups with $(B,N)$-pairs of classical type, Ph.D. Dissertation, University of British Columbia, Vancouver, 1974. P. Hoefsmit and L. L. Scott, unpublished manuscript, 1976.
  • David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
  • R. Kolmoyer, Some irreducible complex representations of a finite group with a BN-pair, Ph.D. Dissertation, M.I.T., 1969. Brigette Kromar and Thomas Schmid-Leissler, Die irreduzißlen komponenten des Permutationscharakters $1_B^G$ einer endlichen $(B,N)$-Parr-Gruppe $G$, Diplomarbeit, Tübingen, 1976.
  • P. Landrock, Finite group algebras and their modules, London Mathematical Society Lecture Note Series, vol. 84, Cambridge University Press, Cambridge, 1983. MR 737910, DOI 10.1017/CBO9781107325524
Similar Articles
Additional Information
  • © Copyright 1990 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 317 (1990), 361-392
  • MSC: Primary 20C30; Secondary 20G05, 20G40, 22E50
  • DOI: https://doi.org/10.1090/S0002-9947-1990-0948191-6
  • MathSciNet review: 948191