Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Centers of generic Hecke algebras


Author: Lenny K. Jones
Journal: Trans. Amer. Math. Soc. 317 (1990), 361-392
MSC: Primary 20C30; Secondary 20G05, 20G40, 22E50
DOI: https://doi.org/10.1090/S0002-9947-1990-0948191-6
MathSciNet review: 948191
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ W$ be a Weyl group and let $ W'$ be a parabolic subgroup of $ W$. Define $ A$ as follows:

$\displaystyle A = R{ \otimes _{{\mathbf{Q}}[u]}}\mathcal{A}(W)$

where $ \mathcal{A}(W)$ is the generic algebra of type $ {A_n}$ over $ {\mathbf{Q}}[u]$ an indeterminate, associated with the group $ W$, and $ R$ is a $ {\mathbf{Q}}[u]$-algebra, possibly of infinite rank, in which $ u$ is invertible. Similarly, we define $ A'$ associated with $ W'$. Let $ M$ be an $ A - A$ bimodule, and let $ b \in M$. Define the relative norm [14]

$\displaystyle {N_{W,W'}}(b) = \sum\limits_{t \in T} {{u^{ - l(t)}}{a_{{t^{ - 1}}}}b{a_t}} $

where $ T$ is the set of distinguished right coset representives for $ W'$ in $ W$. We show that if $ b \in {Z_M}(A') = \{ m \in M\vert ma' = a'm\quad \forall a' \in A'\} $, then $ {N_{W,W'}}(b) \in {Z_M}(A)$. In addition, other properties of the relative norm are given and used to develop a theory of induced modules for generic Hecke algebras including a Markey decomposition. This section of the paper is previously unpublished work of P. Hoefsmit and L. L. Scott.

Let $ \alpha = ({k_1},{k_2}, \ldots ,{k_z})$ be a partition of $ n$ and let $ {S_\alpha } = \Pi _{i = 1}^Z{S_{{k_i}}}$ be a "left-justified" parabolic subgroup of $ {S_n}$ of shape $ \alpha $.

Define

$\displaystyle {b_\alpha } = {N_{{S_n},{S_\alpha }}}({\mathcal{N}_\alpha })$

, where

$\displaystyle {\mathcal{N}_\alpha } = \prod\limits_{i = 1}^z {{N_{{S_{{k_i} - 1}},{S_1}}}({a_{{w_i}}})} $

with $ {w_i}$ a $ {k_i}$-cycle of length $ {k_i} - 1$ in $ {S_{{k_i}}}$. Then the main result of this paper is

Theorem. The set $ \{ {b_\alpha }\vert\alpha \vdash n\} $ is a basis for $ {Z_{A({S_n})}}(A({S_n}))$ over $ {\mathbf{Q}}[u,{u^{ - 1}}]$.

Remark. The norms $ {b_\alpha }$ in $ {Z_{A({S_n})}}(A({S_n}))$ are analogs of conjugacy class sums in the center of $ {\mathbf{Q}}{S_n}$ and, in fact, specialization of these norms at $ u = 1$ gives the standard conjugacy class sum basis of the center of $ {\mathbf{Q}}{S_n}$ up to coefficients from $ {\mathbf{Q}}$.


References [Enhancements On Off] (What's this?)

  • [1] Michael Aschbacher, Finite group theory, Cambridge Univ. Press, 1986. MR 895134 (89b:20001)
  • [2] N. Bourbaki, Groupes et algèbres de Lie, Chapters 4-6, Actualités Sci. Indust., No. 1337, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [3] R. W. Carter, Simple groups of Lie type, Wiley, New York and London, 1972. MR 0407163 (53:10946)
  • [4] C. W. Curtis, Representations of finite groups of Lie type, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 721-757. MR 537625 (81a:20013)
  • [5] -, On Lusztig's isomorphism theorem for Hecke algebras, J. Algebra 92 (1985), 348-364. MR 778453 (86f:20042)
  • [6] -, Representation theory notes from a course given at the University of Virginia in 1975.
  • [7] C. W. Curtis, N. Iwahori, and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with $ (B,N)$-pairs, Inst. Hautes Études Sci. Publ. Math. 40 (1972), 81-116. MR 0347996 (50:494)
  • [8] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, 1962. MR 0144979 (26:2519)
  • [9] -, Methods of representation theory, Vol. I, Wiley-Interscience, New York, 1981. MR 632548 (82i:20001)
  • [10] -, Methods of representation theory, Vol. II, Wiley-Interscience, New York, 1987. MR 892316 (88f:20002)
  • [11] C. W. Curtis and L. L. Scott, unpublished work, 1974.
  • [12] W. Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland, Amsterdam, 1982. MR 661045 (83g:20001)
  • [13] P. Hoefsmit, Representations of Hecke algebras of finite groups with $ (B,N)$-pairs of classical type, Ph.D. Dissertation, University of British Columbia, Vancouver, 1974.
  • [14] P. Hoefsmit and L. L. Scott, unpublished manuscript, 1976.
  • [15] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR 560412 (81j:20066)
  • [16] R. Kolmoyer, Some irreducible complex representations of a finite group with a BN-pair, Ph.D. Dissertation, M.I.T., 1969.
  • [17] Brigette Kromar and Thomas Schmid-Leissler, Die irreduzißlen komponenten des Permutationscharakters $ 1_B^G$ einer endlichen $ (B,N)$-Parr-Gruppe $ G$, Diplomarbeit, Tübingen, 1976.
  • [18] Peter Landrock, Finite group algebras and their modules, London Math. Soc. Lecture Note Series, vol. 84, Cambridge Univ. Press, 1983. MR 737910 (85h:20002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20C30, 20G05, 20G40, 22E50

Retrieve articles in all journals with MSC: 20C30, 20G05, 20G40, 22E50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0948191-6
Keywords: Generic Hecke algebras, Weyl groups, parabolic subgroups
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society