Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Centers of generic Hecke algebras


Author: Lenny K. Jones
Journal: Trans. Amer. Math. Soc. 317 (1990), 361-392
MSC: Primary 20C30; Secondary 20G05, 20G40, 22E50
MathSciNet review: 948191
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ W$ be a Weyl group and let $ W'$ be a parabolic subgroup of $ W$. Define $ A$ as follows:

$\displaystyle A = R{ \otimes _{{\mathbf{Q}}[u]}}\mathcal{A}(W)$

where $ \mathcal{A}(W)$ is the generic algebra of type $ {A_n}$ over $ {\mathbf{Q}}[u]$ an indeterminate, associated with the group $ W$, and $ R$ is a $ {\mathbf{Q}}[u]$-algebra, possibly of infinite rank, in which $ u$ is invertible. Similarly, we define $ A'$ associated with $ W'$. Let $ M$ be an $ A - A$ bimodule, and let $ b \in M$. Define the relative norm [14]

$\displaystyle {N_{W,W'}}(b) = \sum\limits_{t \in T} {{u^{ - l(t)}}{a_{{t^{ - 1}}}}b{a_t}} $

where $ T$ is the set of distinguished right coset representives for $ W'$ in $ W$. We show that if $ b \in {Z_M}(A') = \{ m \in M\vert ma' = a'm\quad \forall a' \in A'\} $, then $ {N_{W,W'}}(b) \in {Z_M}(A)$. In addition, other properties of the relative norm are given and used to develop a theory of induced modules for generic Hecke algebras including a Markey decomposition. This section of the paper is previously unpublished work of P. Hoefsmit and L. L. Scott.

Let $ \alpha = ({k_1},{k_2}, \ldots ,{k_z})$ be a partition of $ n$ and let $ {S_\alpha } = \Pi _{i = 1}^Z{S_{{k_i}}}$ be a "left-justified" parabolic subgroup of $ {S_n}$ of shape $ \alpha $.

Define

$\displaystyle {b_\alpha } = {N_{{S_n},{S_\alpha }}}({\mathcal{N}_\alpha })$

, where

$\displaystyle {\mathcal{N}_\alpha } = \prod\limits_{i = 1}^z {{N_{{S_{{k_i} - 1}},{S_1}}}({a_{{w_i}}})} $

with $ {w_i}$ a $ {k_i}$-cycle of length $ {k_i} - 1$ in $ {S_{{k_i}}}$. Then the main result of this paper is

Theorem. The set $ \{ {b_\alpha }\vert\alpha \vdash n\} $ is a basis for $ {Z_{A({S_n})}}(A({S_n}))$ over $ {\mathbf{Q}}[u,{u^{ - 1}}]$.

Remark. The norms $ {b_\alpha }$ in $ {Z_{A({S_n})}}(A({S_n}))$ are analogs of conjugacy class sums in the center of $ {\mathbf{Q}}{S_n}$ and, in fact, specialization of these norms at $ u = 1$ gives the standard conjugacy class sum basis of the center of $ {\mathbf{Q}}{S_n}$ up to coefficients from $ {\mathbf{Q}}$.


References [Enhancements On Off] (What's this?)

  • [1] Michael Aschbacher, Finite group theory, Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 1986. MR 895134
  • [2] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). MR 0240238
  • [3] Roger W. Carter, Simple groups of Lie type, John Wiley & Sons, London-New York-Sydney, 1972. Pure and Applied Mathematics, Vol. 28. MR 0407163
  • [4] Charles W. Curtis, Representations of finite groups of Lie type, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 5, 721–757. MR 537625, 10.1090/S0273-0979-1979-14648-2
  • [5] Charles W. Curtis, On Lusztig’s isomorphism theorem for Hecke algebras, J. Algebra 92 (1985), no. 2, 348–365. MR 778453, 10.1016/0021-8693(85)90125-5
  • [6] -, Representation theory notes from a course given at the University of Virginia in 1975.
  • [7] C. W. Curtis, N. Iwahori, and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with (𝐵, 𝑁)-pairs, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 81–116. MR 0347996
  • [8] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR 0144979
  • [9] Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders; Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 632548
  • [10] Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. II, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 892316
  • [11] C. W. Curtis and L. L. Scott, unpublished work, 1974.
  • [12] Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
  • [13] P. Hoefsmit, Representations of Hecke algebras of finite groups with $ (B,N)$-pairs of classical type, Ph.D. Dissertation, University of British Columbia, Vancouver, 1974.
  • [14] P. Hoefsmit and L. L. Scott, unpublished manuscript, 1976.
  • [15] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, 10.1007/BF01390031
  • [16] R. Kolmoyer, Some irreducible complex representations of a finite group with a BN-pair, Ph.D. Dissertation, M.I.T., 1969.
  • [17] Brigette Kromar and Thomas Schmid-Leissler, Die irreduzißlen komponenten des Permutationscharakters $ 1_B^G$ einer endlichen $ (B,N)$-Parr-Gruppe $ G$, Diplomarbeit, Tübingen, 1976.
  • [18] P. Landrock, Finite group algebras and their modules, London Mathematical Society Lecture Note Series, vol. 84, Cambridge University Press, Cambridge, 1983. MR 737910

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20C30, 20G05, 20G40, 22E50

Retrieve articles in all journals with MSC: 20C30, 20G05, 20G40, 22E50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0948191-6
Keywords: Generic Hecke algebras, Weyl groups, parabolic subgroups
Article copyright: © Copyright 1990 American Mathematical Society