Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Complex interpolation of normed and quasinormed spaces in several dimensions. II. Properties of harmonic interpolation


Author: Zbigniew Slodkowski
Journal: Trans. Amer. Math. Soc. 317 (1990), 255-285
MSC: Primary 46M35; Secondary 32A30, 32F05, 46A99, 46B70
DOI: https://doi.org/10.1090/S0002-9947-1990-0949900-2
MathSciNet review: 949900
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is a continuation of the study of harmonic interpolation families of normed or quasinormed spaces parametrized by points of a domain in $ {{\mathbf{C}}^k}$. It is shown, among other things, that each of the following properties holds for all the intermediate quasinormed spaces, if it holds for all given boundary spaces: (1) being a normed space; (2) being a Hilbert space; (3) satisfying the triangle inequality by the $ r$th power of the quasinorm; (4) being uniformly convex; and (5) being uniformly smooth. As a principal tool, the notion of a harmonic set valued function (a generalization of analytic multifunction) is introduced and studied.


References [Enhancements On Off] (What's this?)

  • [1] H. Alexander and J. Wermer, Polynomial hulls with convex fibers, Math. Ann. 271 (1985), 99-109. MR 779607 (86i:32025)
  • [2] R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher and G. Weiss, The complex method for interpolation of operators acting on families of Banach spaces, Lecture Notes in Math., vol. 779, Springer-Verlag, Berlin and New York, 1980, pp. 123-153. MR 576042 (81k:46075)
  • [3] -, Complex interpolation for families of Banach spaces, Proc. Sympos. Pure Math., vol. 35, part 2, Amer. Math. Soc., Providence, R.I., 1979, pp. 269-282. MR 545314 (81a:46082)
  • [4] -, A theory of complex interpolation for families of Banach spaces, Adv. in Math. 33 (1982), 203-229. MR 648799 (83j:46084)
  • [5] R. Coifman and S. Semmes, Interpolation of Banach spaces and nonlinear Dirichlet problems.
  • [6] M. M. Day, Normed linear spaces, 3rd ed., Springer-Verlag, New York, 1973. MR 0344849 (49:9588)
  • [7] R. L. Hunt and J. J. Murray, $ q$-plurisubharmonic functions and a generalized Dirichlet problem, Michigan Math. J. 25 (1978), 299-316. MR 512901 (80b:32018)
  • [8] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II, Springer-Verlag, New York, 1979. MR 540367 (81c:46001)
  • [9] R. Rochberg, Interpolation of Banach spaces and negatively curved vector bundles, Pacific J. Math. 110 (1984), 355-376. MR 726495 (85m:46077)
  • [10] -, The work of Coifman and Semmes on complex interpolation, several complex variables and PDEs, U.S.-Swedish Seminar on Function Spaces and Applications, Lund, June 1986, Lecture Notes in Math., vol. 1302, Springer-Verlag, New York, 1988. MR 942258 (90f:46117)
  • [11] Z. Slodkowski, Analytic set-valued functions and spectra, Math. Ann. 256 (1981), 363-386. MR 626955 (83b:46070)
  • [12] -, The Bremermann-Dirichlet problem for $ q$-plurisubharmonic functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), 303-326. MR 764948 (86a:32038)
  • [13] -, Analytic multifunctions, pseudoconvex domains and uniform algebras, Contemp. Math. 32 (1984), 243-258.
  • [14] -, Local maximum property and $ q$-plurisubharmonic functions in uniform algebras, J. Math. Anal. Appl. 115 (1986), 105-130. MR 835588 (87j:32050)
  • [15] -, An analytic set-valued selection and its applications to the corona theorem, to polynomial hulls and joint spectra, Trans. Amer. Math. Soc. 294 (1986), 367-377. MR 819954 (87e:32021)
  • [16] -, On bounded analytic functions in finitely connected domains, Trans. Amer. Math. Soc. 300 (1987), 721-736. MR 876475 (88e:32024)
  • [17] -, Pseudoconvex classes of functions. I. Pseudoconcave and pseudoconvex sets, Pacific J. Math. 134 (1988), 343-376. MR 961240 (89m:32031)
  • [18] -, Complex interpolation of normed and quasinormed spaces in several dimensions. I, Trans. Amer. Math. Soc. 308 (1988), 685-711. MR 951623 (89j:32024)
  • [19] -, Pseudoconvex classes of functions. III. Characterization of dual pseudoconvex classes on complex homogeneous spaces, Trans. Amer. Math. Soc. 309 (1988), 165-189. MR 957066 (89m:32032)
  • [20] -, Pseudoconvex classes of functions. II, Pacific J. Math. (to appear).
  • [21] -, Complex interpolation of normed and quasinormed spaces in several dimensions. III, Trans. Amer. Math. Soc. (to appear).
  • [22] J. Wermer, letter.
  • [23] R. Rochberg, Function theoretic results for complex interpolation families of Banach spaces, Trans. Amer. Math. Soc. 284 (1984), 745-758. MR 743742 (85m:46078)
  • [24] M. Cwikel and S. Reisner, Interpolation of uniformly convex Banach spaces, Proc. Amer. Math. Soc. 84 (1982), 555-559. MR 643748 (83g:46066)
  • [25] M. Vignati, Complex interpolation and convexity, Proc. Amer. Math. Soc. 99 (1987), 705-711. MR 877044 (88c:46087)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46M35, 32A30, 32F05, 46A99, 46B70

Retrieve articles in all journals with MSC: 46M35, 32A30, 32F05, 46A99, 46B70


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0949900-2
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society