Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Invariant tori for the billiard ball map
HTML articles powered by AMS MathViewer

by Valery Kovachev and Georgi Popov PDF
Trans. Amer. Math. Soc. 317 (1990), 45-81 Request permission

Abstract:

For an $n$-dimensional domain $\Omega (n \geq 3)$ with a smooth boundary which is strictly convex in a neighborhood of an elliptic closed geodesic $\mathcal {O}$, the existence of a family of invariant tori for the billiard ball map with a positive measure is proved under the assumptions of nondegeneracy and $N$-elementarity, $N \geq 5$, of the corresponding to $\mathcal {O}$ Poincaré map. Moreover, the conjugating diffeomorphism constructed is symplectic. An analogous result is obtained in the case $n=2$. It is shown that the lengths of the periodic geodesics determine uniquely the invariant curves near the boundary and the billiard ball map on them up to a symplectic diffeomorphism.
References
  • V. I. Arnol′d, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk 18 (1963), no. 6 (114), 91–192 (Russian). MR 0170705
  • V. Arnold, Les méthodes mathématiques de la mécanique classique, Éditions Mir, Moscow, 1976 (French). Traduit du russe par Djilali Embarek. MR 0474391
  • V. I. Arnold, V. V. Kozlov and A. I. Neustadt, Mathematical aspects of classical and celestial mechanics, Current Problems in Math., Fundamental Directions $3$, Moscow, 1985. (Russian)
  • Raphaël Douady, Une démonstration directe de l’équivalence des théorèmes de tores invariants pour difféomorphismes et champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 2, 201–204 (French, with English summary). MR 676353
  • —, Applications du theorème de tores invariants, Thèse, Univ. Paris VII, 1982.
  • Victor Guillemin and Richard Melrose, A cohomological invariant of discrete dynamical systems, E. B. Christoffel (Aachen/Monschau, 1979) Birkhäuser, Basel-Boston, Mass., 1981, pp. 672–679. MR 661107
  • Richard S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65–222. MR 656198, DOI 10.1090/S0273-0979-1982-15004-2
  • Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. MR 781536
  • Wilhelm Klingenberg, Lectures on closed geodesics, Grundlehren der Mathematischen Wissenschaften, Vol. 230, Springer-Verlag, Berlin-New York, 1978. MR 0478069
  • Wilhelm Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin-New York, 1982. MR 666697
  • V. Ch. Kovachev and G. S. Popov, Existence of invariant tori for the billiard ball map near an elliptic periodic geodesic, C. R. Acad. Bulgare Sci. 41 (1988), no. 9, 19–22. MR 971828
  • V. F. Lazutkin, Vypuklyĭ billiard i sobstvennye funktsii operatora Laplasa, Leningrad. Univ., Leningrad, 1981 (Russian). MR 633153
  • A. Magnuson, Symplectic singularities, periodic orbits of the billiard ball map, and the obstacle problem, Thesis, M.I.T., Cambridge, Mass., 1984.
  • Shahla Marvizi and Richard Melrose, Spectral invariants of convex planar regions, J. Differential Geom. 17 (1982), no. 3, 475–502. MR 679068
  • R. B. Melrose, Equivalence of glancing hypersurfaces, Invent. Math. 37 (1976), no. 3, 165–191. MR 436225, DOI 10.1007/BF01390317
  • J. Moser, Proof of a generalized form of a fixed point theorem due to G. D. Birkhoff, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976) Lecture Notes in Math., Vol. 597, Springer, Berlin, 1977, pp. 464–494. MR 0494305
  • G. Popov, Invariant circles and length spectrum of the billiard ball map, Preprint. —, Quasimodes for the Laplace operator (in preparation).
  • Jürgen Pöschel, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math. 35 (1982), no. 5, 653–696. MR 668410, DOI 10.1002/cpa.3160350504
  • N. V. Svanidze, Existence of invariant tori for a three-dimensional billiard, which are concentrated in the vicinity of a “closed geodesic on the boundary region”, Uspekhi Mat. Nauk 33 (1978), no. 4(202), 225–226 (Russian). MR 510686
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F05, 58G25
  • Retrieve articles in all journals with MSC: 58F05, 58G25
Additional Information
  • © Copyright 1990 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 317 (1990), 45-81
  • MSC: Primary 58F05; Secondary 58G25
  • DOI: https://doi.org/10.1090/S0002-9947-1990-0989578-5
  • MathSciNet review: 989578