Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Invariant tori for the billiard ball map


Authors: Valery Kovachev and Georgi Popov
Journal: Trans. Amer. Math. Soc. 317 (1990), 45-81
MSC: Primary 58F05; Secondary 58G25
DOI: https://doi.org/10.1090/S0002-9947-1990-0989578-5
MathSciNet review: 989578
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For an $ n$-dimensional domain $ \Omega (n \geq 3)$ with a smooth boundary which is strictly convex in a neighborhood of an elliptic closed geodesic $ \mathcal{O}$, the existence of a family of invariant tori for the billiard ball map with a positive measure is proved under the assumptions of nondegeneracy and $ N$-elementarity, $ N \geq 5$, of the corresponding to $ \mathcal{O}$ Poincaré map. Moreover, the conjugating diffeomorphism constructed is symplectic. An analogous result is obtained in the case $ n=2$. It is shown that the lengths of the periodic geodesics determine uniquely the invariant curves near the boundary and the billiard ball map on them up to a symplectic diffeomorphism.


References [Enhancements On Off] (What's this?)

  • [1] V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Russian Math. Surveys 18 (1963), 85-193. MR 0170705 (30:943)
  • [2] -, Mathematical methods of classical mechanics, Springer-Verlag, Berlin and New York, 1978. MR 0690288 (57:14033b)
  • [3] V. I. Arnold, V. V. Kozlov and A. I. Neustadt, Mathematical aspects of classical and celestial mechanics, Current Problems in Math., Fundamental Directions $ 3$, Moscow, 1985. (Russian)
  • [4] R. Douady, Une démonstration directe de l'équivalence des théorèmes de tores invariants pour difféomorphismes et champs de vecteurs, C. R. Acad. Sci. Paris Sér. A 295 (1982), 201-204. MR 676353 (84b:58040)
  • [5] -, Applications du theorème de tores invariants, Thèse, Univ. Paris VII, 1982.
  • [6] V. Guillemin and R. Melrose, A cohomological invariant of discrete dynamical systems, Christoffel Centennial Volume, Birkhäuser, Basel, 1981. MR 661107 (84h:58148)
  • [7] R. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222. MR 656198 (83j:58014)
  • [8] L. Hàrmander, The analysis of linear partial differential operators. III, Springer-Verlag, Berlin and New York, 1985. MR 781536 (87d:35002a)
  • [9] W. Klingenberg, Lectures on closed geodesics, Springer-Verlag, Berlin and New York, 1978. MR 0478069 (57:17563)
  • [10] -, Riemannian geometry, de Gruyter, Berlin and New York, 1982. MR 666697 (84j:53001)
  • [11] V. Kovachev and G. Popov, Existence of invariant tori for the billiard ball map near an elliptic periodic geodesic, C. R. Acad. Bulgare Sci. 41 (1988), 19-22. MR 971828 (90d:58039)
  • [12] V. F. Lazutkin, Convex billiard and eigenfunctions of the Laplace operator, Leningrad Univ., 1981. (Russian) MR 633153 (83f:58078)
  • [13] A. Magnuson, Symplectic singularities, periodic orbits of the billiard ball map, and the obstacle problem, Thesis, M.I.T., Cambridge, Mass., 1984.
  • [14] Sh. Marvizi and R. Melrose, Spectral invariants of convex planar regions, J. Differential Geom. 17 (1982), 475-502. MR 679068 (85d:58084)
  • [15] R. Melrose, Equivalence of glancing hypersurfaces, Invent. Math. 37 (1976), 165-191. MR 0436225 (55:9173)
  • [16] J. Moser, Proof of a generalized form of a fixed point theorem due to G. D. Birkhoff, Lecture Notes in Math., vol. 597, Springer-Verlag, Berlin and New York, 1977, pp. 464-494. MR 0494305 (58:13205)
  • [17] G. Popov, Invariant circles and length spectrum of the billiard ball map, Preprint.
  • [18] -, Quasimodes for the Laplace operator (in preparation).
  • [19] J. Pàschel, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math. 35 (1982), 653-696. MR 668410 (84d:58039)
  • [20] N. V. Svanidze, Existence of invariant tori for a three-dimensional billiard, which are concentrated in the vicinity of a "closed geodesic on the boundary region," Uspekhi Mat. Nauk 33 (1978), 225-226. (Russian) MR 510686 (80k:58086)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F05, 58G25

Retrieve articles in all journals with MSC: 58F05, 58G25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0989578-5
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society