Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Prime ideals in differential operator rings. Catenarity


Authors: K. A. Brown, K. R. Goodearl and T. H. Lenagan
Journal: Trans. Amer. Math. Soc. 317 (1990), 749-772
MSC: Primary 16A05; Secondary 16A66
DOI: https://doi.org/10.1090/S0002-9947-1990-0946215-3
MathSciNet review: 946215
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a commutative algebra over the commutative ring $ k$, and let $ \Delta = \{ {\delta _1}, \ldots ,{\delta _n}\} $ be a finite set of commuting $ k$-linear derivations from $ R$ to $ R$. Let $ T = R[{\theta _1}, \ldots ,{\theta _n};{\delta _1}, \ldots ,{\delta _n}]$ be the corresponding ring of differential operators. We define and study an isomorphism of left $ R$-modules between $ T$ and its associated graded ring $ R[{x_1}, \ldots ,{x_n}]$, a polynomial ring over $ R$. This isomorphism is used to study the prime ideals of $ T$, with emphasis on the question of catenarity. We prove that $ T$ is catenary when $ R$ is a commutative noetherian universally catenary $ k$-algebra and one of the following cases occurs: (A) $ k$ is a field of characteristic zero and $ \Delta $ acts locally finitely; (B) $ k$ is a field of positive characteristic; (C) $ k$ is the ring of integers, $ R$ is affine over $ k$, and $ \Delta $ acts locally finitely.


References [Enhancements On Off] (What's this?)

  • [1] A. D. Bell, Localization and ideal theory in iterated differential operator rings, J. Algebra 106 (1987), 376-402. MR 880964 (88m:16002)
  • [2] A. D. Bell and G. Sigurdsson, Catenarity and Gelfand-Kirillov dimension in Ore extensions, J. Algebra (to appear). MR 1028462 (91b:16027)
  • [3] W. Borho, P. Gabriel, and R. Rentschler, Primideale in Einhüllenden auflösbarer Lie-Algebren, Lecture Notes in Math., vol. 357, Springer-Verlag, Berlin, 1973. MR 0376790 (51:12965)
  • [4] P. M. Cohn, Algebra, Vol. II, Wiley, London, 1977. MR 0530404 (58:26625)
  • [5] J. R. Fisher, A Goldie theorem for differentiably prime rings, Pacific J. Math. 58 (1975) 71-77. MR 0374195 (51:10395)
  • [6] O. Gabber, Equidimensionalité de la variété charactéristique, Exposé de O. Gabber, rédigé par T. Levasseur, Université de Paris VI, 1982.
  • [7] K. R. Goodearl and R. B. Warfield, Jr., Primitivity in differential operator rings, Math. Z. 180 (1982), 503-523. MR 667005 (83k:13018)
  • [8] R. Irving, Generic flatness and the Nullstellensatz for Ore extensions, Comm. Algebra 7 (1979), 259-277. MR 519702 (80b:13005)
  • [9] D. A. Jordan, Noetherian Ore extensions and Jacobson rings, J. London Math. Soc. 10 (1975), 281-291. MR 0389988 (52:10816)
  • [10] I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970. MR 0254021 (40:7234)
  • [11] G. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Research Notes in Math., No. 116, Pitman, Boston, Mass., 1985. MR 1721834 (2000j:16035)
  • [12] M. Lorenz, Chains of prime ideals in enveloping algebras of solvable Lie algebras, J. London Math. Soc. (2) 24 (1981) 205-210. MR 631934 (83e:17011)
  • [13] H. Matsumura, Commutative algebra, 2nd ed., Benjamin/Cummings, Reading, Mass., 1980. MR 575344 (82i:13003)
  • [14] L. H. Rowen, Polynomial identities in ring theory, Academic Press, New York, 1980. MR 576061 (82a:16021)
  • [15] W. Schelter, Non-commutative affine P.I. rings are catenary, J. Algebra 51 (1978), 12-18. MR 0485980 (58:5772)
  • [16] G. Sigurdsson, Differential operator rings whose prime factors have bounded Goldie dimension, Arch. Math. 42 (1984), 348-353. MR 753356 (86e:16004)
  • [17] P. F. Smith, Localization and the AR property, Proc. London Math. Soc. (3) 22 (1971), 39-68. MR 0294383 (45:3453)
  • [18] S. Yammine, Les théorèmes de Cohen-Seidenberg en algèbre non commutative, Séminaire d'Algèbre P. Dubreil 1977-78, Lecture Notes in Math., vol. 740, Springer-Verlag, Berlin, 1979, pp. 120-169. MR 563499 (81i:16004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A05, 16A66

Retrieve articles in all journals with MSC: 16A05, 16A66


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0946215-3
Keywords: Differential operator ring, prime ideal, catenarity, height, derivation
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society