Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The Mourre estimate for dispersive $ N$-body Schrödinger operators

Author: Jan Dereziński
Journal: Trans. Amer. Math. Soc. 317 (1990), 773-798
MSC: Primary 81F10; Secondary 35J10, 47F05, 81C10
MathSciNet review: 970265
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the Mourre estimate for a certain class of dispersive $ N$-body Schrödinger operators. Using this estimate we derive some properties of those operators such as the local finiteness of the finite spectrum and the absence of the singular continuous spectrum.

References [Enhancements On Off] (What's this?)

  • [M1] E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys. 78 (1981), 391-408. MR 603501 (82c:47030)
  • [PSS] P. Perry, I. M. Sigal and B. Simon, Spectral analysis of $ N$-body Schrödinger operators, Ann. of Math. 114 (1981), 519-567. MR 634428 (83b:81129)
  • [FH1] R. Froese and I. Herbst, A new proof of the Mourre estimate, Duke Math. J. 49 (1982), 1075-1085. MR 683011 (85d:35092)
  • [M2] E. Mourre, Opérateurs conjugués et propriétés de propagations, Comm. Math. Phys. 91 (1983), 279-300. MR 723552 (86h:47031)
  • [CFKS] H. L. Cycon, R. Froese, W. Kirsch and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer-Verlag, Berlin, Heidelberg and New York, 1987. MR 883643 (88g:35003)
  • [Ya] D. R. Yafaev, Remarks on the spectral theory for Schrödinger operators of multiparticle type, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov. (LOMI) 133 (1984), 277-298. (Russian) MR 742163 (86a:81086)
  • [FH2] R. Froese and I. Herbst, Exponential bounds and absence of positive eigenvalues for $ N$-body Schrödinger operators, Comm. Math. Phys. 87 (1982), 429-447. MR 682117 (85g:35091)
  • [SigSof1] I. Sigal and A. Soffer, $ N$-particle scattering problem: Asymptotic completeness for short range systems, Ann. of Math. 125 (1987), 35-108. MR 898052 (88m:81137)
  • [SigSof2] -, private communication.
  • [A] S. Agmon, Lectures on the exponential decay of solutions of second order elliptic equations, Princeton Univ. Press, Princeton, N.J., 1982. MR 745286 (85f:35019)
  • [RS3] M. Reed and B. Simon, Methods of modern mathematical physics. III, Academic Press, New York, 1979. MR 529429 (80m:81085)
  • [RS4] -, Methods of modern mathematical physics. IV, Academic Press, New York, 1978.
  • [Sig1] I. M. Sigal, Scattering theory for many body quantum mechanical systems, Lecture Notes in Math., vol. 1011, Springer-Verlag, Berlin and New York, 1983. MR 715786 (87g:81123)
  • [Ha] G. A. Hagedorn, Asymptotic completeness for two, three, and four particle Schrödinger operators, Trans. Amer. Math. Soc. 258 (1980), 1-75. MR 554318 (81a:81079)
  • [Ka1] T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann. 162 (1966), 258-279. MR 0190801 (32:8211)
  • [Ka2] -, Smooth operators and commutators, Studia Math. 31 (1968), 535-546. MR 0234314 (38:2631)
  • [De1] J. Dereziński, A new proof of the propagation theorem for $ N$-body quantum systems, preprint, 1988.
  • [De2] -, Criteria for the Kato-smoothness with respect to a dispersive $ N$-body operator, preprint, 1988.
  • [Ka3] T. Kato, Perturbation theory for linear operators (2nd ed.), Springer-Verlag, Berlin, Heidelberg, New York, 1980.
  • [Kalf] H. Kalf, The quantum mechanical virial theorem and the absence of positive energy bound states of Schrödinger operators, Israel J. Math. 20 (1975), 57-69. MR 0372438 (51:8647)
  • [We] J. Weidmann, The virial theorem and its application to the spectral theory of Schrödinger operators, Bull. Amer. Math. Soc. 73 (1967). MR 0208197 (34:8007)
  • [E] V. Enss, A note on Hunziker's theorem, Comm. Math. Phys. 52 (1977), 233-238. MR 0446195 (56:4524)
  • [DS] P. Deift and B. Simon, A time-dependent approach to the completeness of multiparticle quantum scattering, Comm. Pure Appl. Math. 30 (1977), 573-583. MR 0459397 (56:17590)
  • [Sim] B. Simon, Geometric methods in multiparticle quantum systems, Comm. Math. Phys. 55 (1977), 259-274. MR 0496073 (58:14691a)
  • [Sig2] I. M. Sigal, Geometric methods in quantum many body problem. Nonexistence of very negative ions, Comm. Math. Phys. 85 (1982), 309-324. MR 676004 (83m:81117)
  • [JP] A. Jensen and P. Perry, Commutator methods and Besov space estimates for Schrödinger operators, J. Operator Theory 14 (1985), 181-188. MR 789384 (86h:35096)
  • [JPM] A. Jensen, P. Perry and E. Mourre, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré Phys. Théor. 41 (1984), 207-225. MR 769156 (86j:35126)
  • [Hö] L. Hörmander, The analysis of linear partial differential operators. III, Springer-Verlag, Berlin, Heidelberg and New York, 1985. MR 781536 (87d:35002a)
  • [Ta] M. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, N.J., 1981. MR 618463 (82i:35172)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 81F10, 35J10, 47F05, 81C10

Retrieve articles in all journals with MSC: 81F10, 35J10, 47F05, 81C10

Additional Information

Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society