Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Inequalities for eigenvalues of selfadjoint operators


Author: Stephen M. Hook
Journal: Trans. Amer. Math. Soc. 318 (1990), 237-259
MSC: Primary 47A70; Secondary 35P05, 47B25, 49G20
MathSciNet review: 943604
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish several inequalities for eigenvalues of selfadjoint operators in Hilbert space. The results are quite general. In particular, let $ \Omega $ be a region in $ {{\mathbf{R}}^n},\partial \Omega $ its boundary and $ \Delta $ the Laplace operator in $ {{\mathbf{R}}^n}$. Let $ p(x)$ be a polynomial of degree $ m$ having nonnegative real coefficients. We show that if the problems

(1) $ - \Delta u = \lambda u$ in $ \Omega ;u = 0$ on $ \partial \Omega $;

(2) $ p( - \Delta )\upsilon = \mu \upsilon $ in $ \Omega ;\upsilon $ and its first $ m - 1$   derivatives$ =0$   on$ \partial \Omega $; and

(3) $ {( - \Delta )^m}w = vw$ in $ \Omega ;w$ and its first $ m - 1$   derivatives$ =0$   on$ \partial \Omega $ are selfadjoint with discrete spectra of finite multiplicity $ {\lambda _1} \leq {\lambda _2} \leq \cdots $ etc. then

(4) $ p(\Gamma _i^{1/m}) \geq {\mu _i} \geq p({\lambda _i})$ for each index $ i$. The set of problems (1), (2), (3) and the result (4) is only one example of our more general result.

The above problems (1), (2), and (3) can be thought of as related through the single operator given by the Laplacian. We also establish results for eigenvalues for unrelated operators. Let $ A$, $ B$ and $ A + B$ be selfadjoint on domains $ {D_A},{D_B}$, and $ {D_{A + B}}$ with $ {D_{A + B}} \subseteq {D_A} \cap {D_B}$. If $ A$, $ B$, and $ A + B$ have discrete spectra $ \{ {\lambda _i}\} _{i = 1}^\infty ,\{ {\mu _i}\} _{i = 1}^\infty $ and $ \{ {\Gamma _i}\} _{i = 1}^\infty $ arranged in ascending order, as above, then inequality

(5) $ \sum\nolimits_{i = 1}^n {{\Gamma _i}} \geq \sum\nolimits_{i = 1}^n {({\lambda _i} + {v_i})} $ is established for each positive integer $ n$.


References [Enhancements On Off] (What's this?)

  • [1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
  • [2] Zu Chi Chen, Inequalities for eigenvalues of a class of polyharmonic operators, Appl. Anal. 27 (1988), no. 4, 289–314. MR 936473, 10.1080/00036818808839742
  • [3] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
  • [4] J. B. Diaz, Upper and lower bounds for eigenvalues. Calculus of variations and its applications, Proceedings of Symposia in Applied Mathematics, Vol. VIII, McGraw-Hill Book Co., Inc., New York-Toronto-London, for the American Mathematical Society, Providence, R. I., 1958, pp. 53–78. MR 0092235
  • [5] S. M. Hook, Inequalities for eigenvalues of self-adjoint operators, Doctoral Dissertation, Univ. of California, Berkeley, 1986.
  • [6] H. A. Levine and M. H. Protter, Unrestricted lower bounds for eigenvalues for classes of elliptic equations and systems of equations with applications to problems in elasticity, Math. Methods Appl. Sci. 7 (1985), no. 2, 210–222. MR 797333, 10.1002/mma.1670070113
  • [7] L. E. Payne, New isoperimetric inequalities for eigenvalues and other physical quantities, Comm. Pure Appl. Math. 9 (1956), 531–542. MR 0081433
  • [8] A. Weinstein, Etudes des spectres des equations aux derives partielles de la theorie des plaques elastiques, Mem. Sci. Math. 88 (1937).
  • [9] Alexander Weinstein and William Stenger, Methods of intermediate problems for eigenvalues, Academic Press, New York-London, 1972. Theory and ramifications; Mathematics in Science and Engineering, Vol. 89. MR 0477971

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A70, 35P05, 47B25, 49G20

Retrieve articles in all journals with MSC: 47A70, 35P05, 47B25, 49G20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1990-0943604-8
Article copyright: © Copyright 1990 American Mathematical Society