ALGEBRAICALLY INVARIANT EXTENSIONS OF
σ-FINITE MEASURES ON EUCLIDEAN SPACE

KRZYSZTOF CIESIELSKI

ABSTRACT. Let G be a group of algebraic transformations of \mathbb{R}^n, i.e., the
group of functions generated by bijections of \mathbb{R}^n of the form (f_1, \ldots, f_n) where
each f_j is a rational function with coefficients in \mathbb{R} in n-variables. For a
function $\gamma: G \to (0, \infty)$ we say that a measure μ on \mathbb{R}^n is γ-invariant when
$\mu(g[A]) = \gamma(g) \cdot \mu(A)$ for every $g \in G$ and every μ-measurable set A. We
will examine the question: "Does there exist a proper γ-invariant extension of
μ?" We prove that if μ is σ-finite then such an extension exists whenever
G contains an uncountable subset of rational functions $H \subset (\mathbb{R}(X_1, \ldots, X_n))^n$
such that $\mu(\{x: h_1(x) = h_2(x)\}) = 0$ for all $h_1, h_2 \in H, h_1 \neq h_2$. In particular
if G is any uncountable subgroup of affine transformations of \mathbb{R}^n, $\gamma(g)$ is the
absolute value of the Jacobian of $g \in G$ and μ is a γ-invariant extension of the
n-dimensional Lebesgue measure then μ has a proper γ-invariant extension.
The conclusion remains true for any σ-finite measure if G is a transitive group
of isometries of \mathbb{R}^n. An easy strengthening of this last corollary gives also an
answer to a problem of Harazisvili.

0. INTRODUCTION: NOTATION AND HISTORY

Our terminology related to algebra, measure theory, set theory and model
theory follows [La, Ru, Je and CK] respectively.

Throughout the paper a measure on a set X will stand for a nontrivial posi-
tive σ-additive measure, i.e., a function $\mu: \mathcal{M} \to [0, \infty]$ defined on a σ-algebra
\mathcal{M} of subsets of X containing all singletons such that

(i) $\mu(\bigcup_{i=0}^{\infty} A_i) = \sum_{i=0}^{\infty} \mu(A_i)$ for all pairwise disjoint sets A_i from \mathcal{M},
(ii) $\mu(\{x\}) = 0$ for all $x \in X$,
(iii) $0 < \mu(A) < \infty$ for some $A \in \mathcal{M}$.

If $\mu: \mathcal{M} \to [0, \infty]$ is a measure on X and $A \subset X$ then the inner measure
of A is defined in the standard way: $\mu_*(A) = \sup\{\mu(B): B \subset A & B \in \mathcal{M}\}$.

A measure on X is said to be σ-finite if X is a countable union of sets of
finite measure. A measure μ is complete if all subsets of every set of μ
measure zero are μ-measurable.

Received by the editors March 15, 1988 and, in revised form, June 22, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 28C10; Secondary 14L35.
Key words and phrases. Invariant σ-finite measures, algebraic transformations of \mathbb{R}^n, isometries
of \mathbb{R}^n.

The results of this paper have been presented at MAA and AMS Joint Mathematics Meeting,
Phoenix, Arizona, January 1988 and at the Sixth Annual Auburn Miniconference on Real Analysis,

©1990 American Mathematical Society
0002-9947/90 $1.00 + .25 per page
If G is a group of bijections of a set X then a measure μ on X is said to be G-invariant provided μ is γ-invariant where $\gamma(g) = 1$ for all $g \in G$.

For example, if A_n is a group of affine transformations of \mathbb{R}^n then every element of A_n is uniquely represented as a superposition $T \circ L$ where T is a translation and L is a linear transformation of \mathbb{R}^n. Let $\gamma:A_n \to (0, \infty)$, where $\gamma(T \circ L)$ is defined as the absolute value of the Jacobian of L. Then m, the n-dimensional Lebesgue measure, is γ-invariant. Moreover, if G_n is a group of isometries of \mathbb{R}^n then $G_n \subset A_n$ and m is G_n-invariant.

We say that a measure $\nu: \mathcal{N} \to [0, \infty]$ on a set X is an extension of a measure $\mu: \mathcal{M} \to [0, \infty]$ defined on the same set X if $\mathcal{M} \subset \mathcal{N}$ and $\nu(A) = \mu(A)$ for every $A \in \mathcal{M}$. Moreover, an extension is proper if $\mathcal{M} \neq \mathcal{N}$.

For a group G of bijections of a set X we say that a set $N \subset X$ is G-absolutely negligible if for every G-invariant σ-finite measure μ on X and for every countable set $\{g_r: r = 0, 1, 2, \ldots \} \subset G$ we have $\mu_*\left(\bigcup_{r=0}^{\infty} g_r[N]\right) = 0$ (or, equivalently, if for every G-invariant σ-finite measure μ on X there exists a G-invariant extension ν of μ such that $\nu(N) = 0$; compare Proposition 1.2(b)).

We say that a bijection g of \mathbb{R}^n is an algebraic transformation of \mathbb{R}^n if g is generated by bijections of \mathbb{R}^n from the set $(\mathbb{R}(X_1, \ldots, X_n))_n$. For an algebraic transformation g of \mathbb{R}^n we say that g is defined over the field $L \subset \mathbb{R}$ if g is generated by some bijections of \mathbb{R}^n from $(L(X_1, \ldots, X_n))_n$. For example, the functions

$$f(x, y) = (x^3 + 1, (y + 7)^5), \quad g(x, y) = \left(x, y + \frac{1}{x^2 + 1}\right)$$

and

$$(f^{-1} \circ g)(x, y) = \left((x - 1)^{1/3}, \left(y + \frac{1}{x^2 + 1}\right)^{1/5} - 7\right)$$

are algebraic transformations of \mathbb{R}^2 defined over \mathbb{Q}. Notice also that isometries and, more generally, nonsingular affine transformations of \mathbb{R}^n are algebraic transformations of \mathbb{R}^n that belong to the set $(\mathbb{R}(X_1, \ldots, X_n))_n$.

Now let G be the group of all isometries of \mathbb{R}^n and let μ be a G-invariant σ-finite measure on \mathbb{R}^n. Can we find a proper G-invariant extension of μ?

This question has been discussed several times in the literature. In 1935 Szpilrajn proved that Lebesgue measure on \mathbb{R}^n has a proper isometrically invariant extension (see [Sz]). In the same paper, he stated Sierpinski's question: "Does there exist a maximal isometrically invariant extension of Lebesgue measure on \mathbb{R}^n?" A negative answer to this question, i.e., the theorem "every isometrically invariant measure that extends Lebesgue measure on \mathbb{R}^n has a proper isometrically invariant extension," was proved by several mathematicians. The first result of that kind was obtained independently by Phakadze (in 1958, see [Pk]) and Hulanicki (in 1962, see [Hu]) under the additional set-theoretical assumption that there does not exist a real measurable cardinal less
than or equal to continuum 2^ω, i.e., that there is no measure on \mathbb{R} defined on all subsets of \mathbb{R}. In 1977, Harazisvili got the full result stated above without any set-theoretical assumptions for the one dimensional case, i.e., for $n = 1$ (see [Ha1]). Finally in 1983, Ciesielski and Pelc generalized Harazisvili’s result to all n-dimensional Euclidean spaces \mathbb{R}^n (see [CP]; for more historical details of this issue see also [Ci]). In the same paper Ciesielski and Pelc stated the problem of characterizing those groups G of isometries of \mathbb{R}^n for which every σ-finite G-invariant measure has a proper G-invariant extension (see [CP, p. 6]). A more technical version of the same problem, i.e., the problem of characterizing those groups G of isometries of \mathbb{R}^n for which \mathbb{R}^n is a union of countable many G-absolutely negligible sets, was also stated by Harazisvili in [Ha2].

In the present paper we will consider a generalization of this problem to the case of γ-invariant measure where $\gamma: G \rightarrow (0, \infty)$ and G is a group of algebraic transformations of \mathbb{R}^n. In particular our main theorem (see Abstract, or Theorem 3.1) implies that

“If G is a transitive group of isometries of \mathbb{R}^n then \mathbb{R}^n is a countable union of G-absolutely negligible sets.”

The above fact has been proved earlier by Harazisvili under the assumption of the continuum hypothesis (see [Ha2]). He also asked whether it is possible to remove this assumption from his theorem. Our results give an affirmative answer to this question.

The proof of our main theorem 3.1 uses a generalization of the technique of Ciesielski and Pelc [CP, Theorem 2.1, pp. 4–6]. The author wishes to thank Jan Mycielski for numerous important remarks about former versions of this paper. In particular it was Mycielski’s suggestion to replace in the proof of [CP, Theorem 2.1] the linear basis of \mathbb{R} over \mathbb{Q} by a transcendence basis of \mathbb{R} over \mathbb{Q} and to study in this way algebraic transformations of \mathbb{R}^n. Compare also the paper of Weglorz [We, Theorem 2.4] which was influenced by Mycielski in a similar way.

The author wishes also to thank Piotr Zakrzewski for calling his attention to the paper of Harazisvili [Ha2] and for other helpful remarks.

1. Measure theoretic preliminaries

In what follows we will need the following proposition essentially due to Szpilrajn (see [Sz, §2]).

Proposition 1.1. Let $\gamma: G \rightarrow (0, \infty)$ where G is a group of bijections of a set X and let $\mu: \mathcal{M} \rightarrow [0, \infty]$ be a γ-invariant measure on X. If a family \mathcal{A} of subsets of X is such that

1. \mathcal{A} is closed under countable union,
2. if $A \in \mathcal{A}$ and $g \in G$ then $g[A] \in \mathcal{A}$,
3. every $A \in \mathcal{A}$ has μ inner measure zero,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
then \(\mu \) has a \(\gamma \)-invariant extension \(\nu: \mathcal{N} \to [0, \infty) \) such that \(\mathcal{A} \subset \mathcal{N} \) and \(\nu(A) = 0 \) for every \(A \in \mathcal{A} \).

The construction of such an extension is very simple. If \(\mathcal{I} \) is an ideal of subsets of \(X \) generated by the family \(\mathcal{A} \), and \(\mathcal{N} \) stands for a \(\sigma \)-algebra generated by \(\mathcal{I} \) then all elements of \(\mathcal{N} \) are of the form \((M \cup I_1) \backslash I_2 \) where \(M \in \mathcal{M} \) and \(I_1, I_2 \in \mathcal{I} \). It is easy to see that \(\nu: \mathcal{N} \to [0, \infty] \) such that \(\nu((M \cup I_1) \backslash I_2) = \mu(M) \) is a well-defined \(\gamma \)-invariant measure on \(X \) extending \(\mu \).

In the proof of the next proposition, we use a method which goes back to Harazisvili’s paper [Ha1] (see also [CP, Proposition 1.9, p. 4]).

Proposition 1.2. Let \(G \) be a group of bijections of \(X \), \(\gamma: G \to (0, \infty) \) and let \(\mu \) be a \(\gamma \)-invariant \(\sigma \)-finite measure on \(X \).

(a) If \(N \subset X \) is such that there is an uncountable set \(H \subset G \) such that
\[
\mu_* (h_1[N] \cap h_2[N]) = 0 \quad \text{for distinct } h_1, h_2 \in H, \quad \text{then } \mu_* (N) = 0.
\]

(b) If \(N \subset X \) is such that for every countable set \(\{ g_r: r = 0, 1, 2, \ldots \} \subset G \) we have \(\mu_* (\bigcup_{r=0}^\infty g_r[N]) = 0 \) then there exists a \(\gamma \)-invariant extension \(\nu \) of \(\mu \) such that \(\nu(N) = 0 \).

(c) Moreover if \(X = \bigcup_{k=0}^\infty N_k \) where each \(N_k \) satisfies the assumption of (b) then \(\mu \) has a proper \(\gamma \)-invariant extension.

Proof. (a) If \(\mathcal{M} \subset \mathcal{M} \) is a subset of \(N \) then \(\mu(h_1[M] \cap h_2[M]) = 0 \) for every distinct \(h_1, h_2 \) from \(H \). But \(\mu(h[M]) = \gamma(h) \cdot \mu(M) \) and \(\gamma(h) \neq 0 \) for every \(h \) from \(H \). Hence, \(\sigma \)-finiteness of \(\mu \) implies that \(\mu(M) = 0 \) and so \(\mu_* (N) = 0 \).

(b) By Proposition 1.1 it is enough to notice that every element of the family \(\mathcal{A} = \{ \bigcup_{r=0}^\infty g_r[N]: g_r \in G \text{ for } r = 0, 1, 2, \ldots \} \) has \(\mu \) inner measure 0.

(c) By part (b), for each \(k = 0, 1, 2, \ldots \) there is a \(\gamma \)-invariant extension \(\nu_k \) of \(\mu \) such that \(\nu_k(N_k) = 0 \). But all \(N_k \)’s cannot have \(\mu \) measure zero. So some \(\nu_k \) must be a proper extension of \(\mu \).

In what follows, we will also use the following well-known fact. For the complex case the proof (using the Jensen’s Inequality) can be found in [GR, p. 9]. The direct proof follows also from Fubini’s theorem.

Proposition 1.3. If \(f: \mathbb{R}^n \to \mathbb{R} \) is a nonzero real analytic function then the set
\[Z = \{ a \in \mathbb{R}^n: f(a) = 0 \} \]
has Lebesgue measure zero. In particular, if \(h, g \in (\mathbb{R}(X_1, \ldots, X_n))^n \) are different algebraic transformations of \(\mathbb{R}^n \) then the set
\[\{ a \in \mathbb{R}^n: h(a) = g(a) \} \]
has Lebesgue measure zero.

2. **Algebraic Preliminaries**

A field \(L \subset \mathbb{R} \) is said to be algebraically closed in \(\mathbb{R} \) if \(L = M \cap \mathbb{R} \) where \(M \subset \mathbb{C} \) is an algebraic closure of \(L \). Notice, that an algebraically closed field in \(\mathbb{R} \) is real closed (i.e. satisfies the theory of real closed fields) in the sense defined in [CK or Ro]. The smallest field algebraically closed in \(\mathbb{R} \) containing \(L \subset \mathbb{R} \) is called a real closure of \(L \) and it will be denoted by \(\text{cl}_\mathbb{R}(L) \). The algebraic closure of a field \(K \) will be denoted by \(\text{cl}(K) \).
The next proposition will be used only in the case of algebraic transformation g such that $g^{-1} \in (\mathbb{R}(X_1, \ldots, X_n))^n$. In this case this is a well-known fact and can be proved using standard algebraic technic. However we like to prove it in more general form (that possibly can be used to answer Problem 3 stated in the end of the paper). For this we will need the following model-theoretic definition (compare e.g. [CK]).

A model \mathcal{L} is said to be an elementary submodel of a model \mathcal{R} if $\mathcal{L} \subseteq \mathcal{R}$ and for every first order formula $\varphi(x_1, \ldots, x_m)$ and any parameters a_1, \ldots, a_m from \mathcal{L} the model \mathcal{L} satisfies $\varphi(a_1, \ldots, a_m)$ if and only if \mathcal{R} satisfies $\varphi(a_1, \ldots, a_m)$.

A theory T is said to be model complete if and only if for all models \mathcal{L} and \mathcal{R} of T, if $\mathcal{L} \subseteq \mathcal{R}$ then \mathcal{L} is an elementary submodel of \mathcal{R}.

We need the following important theorem of A. Robinson (see [CK, p. 110] or [Ro, §3.3]).

Theorem 2.1. The theory T of real closed fields is model complete. In particular if $L \subseteq \mathbb{R}$ is a real closed field then L is an elementary submodel of \mathbb{R}.

As a corollary of this fact we easily obtain

Proposition 2.1. If g is an algebraic transformation of \mathbb{R}^n defined over a real closed field $L \subseteq \mathbb{R}$ then

\[(2.1) \quad g[L^n] = L^n.\]

Proof. A first order formula $\varphi(x_1, \ldots, x_m, y_1, \ldots, y_n)$ defined by $g(x_1, \ldots, x_m) = (y_1, \ldots, y_n)$ has as its parameters only elements from L. If $a = (a_1, \ldots, a_n) \in L^n$ then \mathbb{R} satisfies $\exists y_1 \cdots \exists y_n \varphi(a_1, \ldots, a_n, y_1, \ldots, y_n)$ and so does L (by Theorem 2.1), i.e. $g(a_1, \ldots, a_n) \in L^n$. This proves $g[L^n] \subseteq L^n$. To show the converse inclusion it is enough to consider the formula $\exists x_1 \cdots \exists x_n \varphi(x_1, \ldots, x_n, a_1, \ldots, a_n)$.

3. The main theorem

From now on let \mathcal{B} denote a transcendence base of \mathbb{R} over \mathbb{Q}.

Now we are ready to prove our main lemma.

Lemma 3.1. Let $H \subseteq (\mathbb{R}(X_1, \ldots, X_n))^n$ be an uncountable set of algebraic transformations of \mathbb{R}^n. Then there exists an uncountable set $H' \subseteq H$, a finite set $A \subseteq \mathcal{B}$ and, for every $h \in H'$, a finite set $A_h \subseteq \mathcal{B} \setminus A$ with the following properties:

1. each $h \in H'$ (and so h^{-1}) is defined over the field $\text{cl}_{\mathbb{R}}(\mathbb{Q}(A \cup A_h))$;
2. $A_{h_1} \cap A_{h_2} = \emptyset$ for distinct $h_1, h_2 \in H'$;
3. for every $h_1, h_2 \in H'$ if $L = \text{cl}_{\mathbb{R}}(\mathbb{Q}(\mathcal{B} \setminus (A_{h_1} \cup A_{h_2})))$ then $a \in h_1^{-1}[L^n] \cap h_2^{-1}[L^n]$ implies $h_1(a) = h_2(a)$, i.e., $h_1^{-1}[L^n] \cap h_2^{-1}[L^n] \subseteq \{a : h_1(a) = h_2(a)\}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. In the definition of each \(h \in H \) we use only finitely many parameters (i.e. coefficients) so for every \(h \in H \) there exists a finite set \(B_h \subset \mathcal{B} \) such that

\[
h = (h_1, \ldots, h_n) \in [\mathcal{cl}_R(\mathbb{Q}(B_h))(X_1, \ldots, X_n)]^n.
\]

Using for the family \(\{B_h; h \in H\} \) the \(\Delta \)-system argument (see e.g. [Je, Lemma 22.6, p. 226]) we can find an uncountable set \(H_0 \subset H \), a finite set \(A \subset \mathcal{B} \), a natural number \(m \) and, for every \(h \in H_0 \), a set \(A_h \) such that

(i) \(B_h = A \cup A_h \), and \(A \cap A_h = \emptyset \),

(ii) \(A_h \cap A_h' = \emptyset \) for distinct \(h_1, h_2 \in H_0 \),

(iii) \(A_h \) has exactly \(m \) elements.

Thus for the family \(H_0 \), the sets \(A, A_h \ (h \in H_0) \) already satisfy (1) and (2). Therefore it is enough to find an uncountable \(H' \subset H_0 \) which satisfies (3). We will do this in such a way that all elements of \(H' \) will have the same definitions with parameters from \(\mathcal{B} \).

Let \(Z = \{Z_1, \ldots, Z_m\} \) be a set of variables and, for \(h \in H_0 \), let \(\sigma'_h: A_h \to Z \) be a bijection. Then we can extend \(\sigma'_h \) to a field isomorphism \(\sigma''_h \) from \(\mathcal{cl}(\mathbb{Q}(\mathcal{B})) = \mathbb{C} \) to \(\mathcal{cl}(\mathbb{Q}(\mathcal{B}\setminus A_h)(Z)) \) in such a way that \(\sigma''_h(a) = a \) for every \(a \in \mathcal{cl}(\mathbb{Q}(\mathcal{B}\setminus A_h)) \). Let us extend \(\sigma''_h \) to \(\sigma_h: [\mathcal{cl}(\mathbb{Q}(\mathcal{B}))(X_1, \ldots, X_n)]^n \to [\mathcal{cl}(\mathbb{Q}(\mathcal{B}\setminus A_h)(Z))(X_1, \ldots, X_n)]^n \). But \(\sigma_h(h) \in [\mathcal{cl}(\mathbb{Q}(A \cup Z))(X_1, \ldots, X_n)]^n \) and the field \(\mathcal{cl}(\mathbb{Q}(A \cup Z)) \) is countable.

Define \(H' \subset H_0 \) as an uncountable set with the property

\[
(*) \quad \sigma_{h_1}(h_1) = \sigma_{h_2}(h_2) \quad \text{for every } h_1, h_2 \in H'.
\]

We prove that \(H' \) satisfies (3).

Let \(a \in h_1^{-1}[L^n] \cap h_2^{-1}[L^n] \), where \(L = \mathcal{cl}_R(\mathbb{Q}(\mathcal{B}\setminus (A_{h_1} \cup A_{h_2}))) \) and \(h_1, h_2 \in H' \). Notice that \(a \in L^n \) as, by Proposition 2.1, (1) and (2),

\[
a \in h_1^{-1}[L^n] \cap h_2^{-1}[L^n] \subset h_1^{-1}[\mathcal{cl}_R(\mathbb{Q}(\mathcal{B}\setminus A_{h_2})))^n] \cap h_2^{-1}[\mathcal{cl}_R(\mathbb{Q}(\mathcal{B}\setminus A_{h_1})))^n]
\]

\[
= \mathcal{cl}_R(\mathbb{Q}(\mathcal{B}\setminus A_{h_2})))^n \cap \mathcal{cl}_R(\mathbb{Q}(\mathcal{B}\setminus A_{h_1})))^n = L^n.
\]

Put \(h_1(a) = b_1 \) and \(h_2(a) = b_2 \). Thus \(b_1, b_2 \in L^n \). We have to prove that \(b_1 = b_2 \). But, by \((*)\) and the fact that \(\sigma_{h_1}(c) = c = \sigma_{h_2}(c) \) for every \(c \in L^n \),

\[
b_1 = \sigma_h(b_1) = \sigma_h(h_1(a)) = \sigma_{h_1}(h_1(a)) = \sigma_{h_1}(h_1(a)) = \sigma_{h_2}(h_2(a)) = \sigma_{h_2}(h_2(a)) = \sigma_{h_2}(b_2) = b_2.
\]

This finishes the proof of Lemma 3.1.

As a next step we will prove an essential part of the assumptions of Proposition 1.2.

Lemma 3.2. If \(G \) is a group of algebraic transformations of \(\mathbb{R}^n \) and \(H \subset (\mathbb{R}(X_1, \ldots, X_n))^n \) is an uncountable subset of \(G \) then there exists a countable
family of sets \{N_k: k = 0, 1, 2, \ldots\} such that \(\mathbb{R}^n = \bigcup_{k=0}^{\infty} N_k \) and that each \(N_k \) satisfies the condition:

for every countable set \(\{g_r: r = 0, 1, 2, \ldots\} \subset G \) there is an uncountable set \(H_0 \subset H \) such that for every distinct \(h_1, h_2 \in H_0 \)

\[
(3.1) \quad h_1^{-1} \left[\bigcup_{r=0}^{\infty} g_r[N_k] \right] \cap h_2^{-1} \left[\bigcup_{r=0}^{\infty} g_r[N_k] \right] \subset \{a \in \mathbb{R}^n: h_1(a) = h_2(a)\}.
\]

Proof. Let \(\mathscr{B} \) be a transcendence base of \(\mathbb{R} \) over \(Q \) and let \(H' \subset H \), \(A \) and \(A_h \) be as in Lemma 3.1. We choose an increasing sequence \(\mathscr{B}_0 \subset \mathscr{B}_1 \subset \mathscr{B}_2 \subset \cdots \)

of subsets of \(\mathscr{B} \) such that \(\mathscr{B} = \bigcup_{k=1}^{\infty} \mathscr{B}_k \) and for every \(k \) the set

\[
(*) \quad H^k = \{ h \in H': A_h \subset \mathscr{B}_{k+1} \setminus \mathscr{B}_k \}
\]

is uncountable.

Define \(N_k = [\text{cl}_R(Q(\mathscr{B}_k))]^n \). Then \(\bigcup_{k=0}^{\infty} N_k = \mathbb{R}^n \).

Let us fix \(\{g_r: r = 0, 1, 2, \ldots\} \subset G \) and a natural number \(k \). Choose also a countable set \(\mathscr{A} \subset \mathscr{B} \) such that \(A \subset \mathscr{A} \) and every \(g_r \) is defined over \(\text{cl}_R(Q(\mathscr{A})) \). Let \(H_0 = \{ h \in H^{k+1}: A_h \cap \mathscr{A} = \emptyset \} \).

By (*) the set \(H_0 \) is uncountable.

Let us fix arbitrary distinct \(h_1, h_2 \in H_0 \) and let \(L = \text{cl}_R(Q(\mathscr{B} \setminus (A_{h_1} \cup A_{h_2}))) \).

Then, by (*) and definitions of \(H_0 \) and \(N_k \), we can conclude that \(N_k \subset L^n \) and the \(g_r \)'s are defined over \(L \). Hence, by Proposition 2.1,

\[
h_1^{-1} \left[\bigcup_{r=0}^{\infty} g_r[N_k] \right] \cap h_2^{-1} \left[\bigcup_{r=0}^{\infty} g_r[N_k] \right] \subset h_1^{-1} \left[\bigcup_{r=0}^{\infty} g_r[L^n] \right] \cap h_2^{-1} \left[\bigcup_{r=0}^{\infty} g_r[L^n] \right] = h_1^{-1} [L^n] \cap h_2^{-1} [L^n]
\]

and, by (3) of Lemma 3.1, \(h_1^{-1}[L^n] \cap h_2^{-1}[L^n] \subset \{a: h_1(a) = h_2(a)\} \).

Therefore

\[
h_1^{-1} \left[\bigcup_{r=0}^{\infty} g_r[N_k] \right] \cap h_2^{-1} \left[\bigcup_{r=0}^{\infty} g_r[N_k] \right] \subset h_1^{-1}[L^n] \cap h_2^{-1}[L^n] \subset \{a: h_1(a) = h_2(a)\}.
\]

This finishes the proof of Lemma 3.2.

Theorem 3.1. Let \(G \) be a group of algebraic transformations of \(\mathbb{R}^n \), \(\gamma: G \to (0, \infty) \) and let \(\mu \) be a \(\gamma \)-invariant \(\sigma \)-finite measure on \(\mathbb{R}^n \). If \(G \) has an uncountable subset \(H \subset (\mathbb{R}(X_1, \ldots, X_n))^n \) with the property

\[
(3.2) \quad \mu_\gamma(\{a: h_1(a) = h_2(a)\}) = 0 \quad \text{for every } h_1, h_2 \in H, h_1 \neq h_2
\]

then \(\mu \) has a proper \(\gamma \)-invariant extension.

Proof. By (3.2) and Lemma 3.2 we have \(\mathbb{R}^n = \bigcup_{k=0}^{\infty} N_k \) where, by Proposition 1.2(a),

\[
\mu_\gamma(\bigcup_{r=0}^{\infty} g_r[N_k]) = 0 \quad \text{for every countable set } \{g_r: r = 0, 1, 2, \ldots\} \subset G
\]
and every $k = 0, 1, 2, \ldots$. Hence, by Proposition 1.2(c), μ has a proper γ-invariant extension.

Corollary 3.1. Let G be a group of algebraic transformations of \mathbb{R}^n, $\gamma: G \to (0, \infty)$ and let μ be a γ-invariant σ-finite measure on \mathbb{R}^n. If at least one of the following conditions holds

1. G contains uncountably many translations;
2. μ extends the n-dimensional Lebesgue measure and the set $G \cap (\mathbb{R}(X_1, \ldots, X_n))^n$ is uncountable;

then μ has a proper γ-invariant extension.

Proof. It is enough to show that both (C1) and (C2) imply (3.2).

If (C1) holds and H is an uncountable set of translations then for every $h_1, h_2 \in H$, $h_1 \neq h_2$ the set $\{a: h_1(a) = h_2(a)\}$ is empty, so (3.2) is satisfied.

If (C2) holds then (3.2) is implied by Proposition 1.3.

To solve Harazisvili’s problem we will need the following lemma due to Harazisvili (see [Ha2, Remark 2, p. 507]).

Lemma 3.3. Let G be a transitive group of isometries of \mathbb{R}^n, i.e., such that for every $a, b \in \mathbb{R}^n$ there exists $g \in G$ with the property $g(a) = b$. If $A \subset \mathbb{R}^n$ is a countable union of proper affine hyperplanes of \mathbb{R}^n than A is G-absolutely negligible.

Proof. For $k \leq n$ let \mathcal{A}_k denote the family of countable unions of affine hyperplanes of \mathbb{R}^n of dimension less than k. We prove by induction on $k \leq n$ that elements of \mathcal{A}_k are G-absolutely negligible.

So let $k < n$ be such that the elements of \mathcal{A}_k are G-absolutely negligible.

Let us fix an arbitrary $A \in \mathcal{A}_{k+1}$, a G-invariant σ-finite measure μ on \mathbb{R}^n and a countable set \{\(g_r : r = 0, 1, 2, \ldots\)\} $\subset G$. By Proposition 1.2(a) it is enough to find a sequence \(\{h_\zeta: \zeta < \omega_1\}\) $\subset G$ such that for every $\zeta < \eta < \omega_1$

\[
\mu \left(h_\zeta \left[\bigcup_{r=0}^\infty g_r[A] \right] \cap h_\eta \left[\bigcup_{r=0}^\infty g_r[A] \right] \right) = 0.
\]

We will construct it by transfinite induction.

So let us assume that for some $\xi < \omega_1$ we have already constructed \(\{h_\zeta: \zeta < \xi\}\) $\subset G$ such that the condition (a) is satisfied for every $\zeta < \eta < \xi$. Let A_i and H_j ($i, j = 0, 1, 2, \ldots$) be affine hyperplanes of \mathbb{R}^n of dimensions less than or equal to k and such that

\[
\bigcup_{r=0}^\infty g_r[A] = \bigcup_{i=0}^\infty A_i \quad \text{and} \quad \bigcup_{\zeta < \xi} h_\zeta \left[\bigcup_{r=0}^\infty g_r[A] \right] = \bigcup_{j=0}^\infty H_j.
\]

We have to find h_ξ such that

\[
\mu \left(h_\xi \left[\bigcup_{i=0}^\infty A_i \right] \cap \bigcup_{j=0}^\infty H_j \right) = 0.
\]
But if \(h_\xi[A_i] \neq H_j \), then \(h_\xi[A_i] \cap H_j \in \mathcal{A}_k \), i.e., by inductive hypothesis, it is enough to construct \(h_\xi \in G \) such that

\[
(\text{b}) \quad h_\xi[A_i] \neq H_j \quad \text{for every} \ i, j = 0, 1, 2, \ldots.
\]

Let \(w \in \mathbb{R}^n \) represents a vector in \(\mathbb{R}^n \) such that \(w \) is not parallel to any \(H_j \) \((j = 0, 1, 2, \ldots)\). Then for different reals \(a, b \) the distances

\[
\text{dist}(0, a \cdot w + H_j) \neq \text{dist}(0, b \cdot w + H_j) \quad \text{for every} \ j = 0, 1, 2, \ldots.
\]

So we can choose \(b \in \mathbb{R} \) such that

\[
(\text{c}) \quad \text{dist}(0, -b \cdot w + H_j) \neq \text{dist}(0, A_i) \quad \text{for every} \ i, j = 0, 1, 2, \ldots.
\]

Now let \(h_\xi \in G \) be such that \(h_\xi(0) = b \cdot w \). We prove that such \(h_\xi \) satisfies \(\text{(b)} \).

By way of contradiction let us assume that for some \(i \) and \(j \)

\[
(\text{d}) \quad h_\xi[A_i] = H_j.
\]

But \(h_\xi = T \circ L \), where \(L \) is an isometry of \(\mathbb{R}^n \) preserving origin and \(T \) is a translation such that \(T(x) = x + b \cdot w \) for every \(x \in \mathbb{R}^n \). Hence, by \(\text{(d)} \), \(L[A_i] = T^{-1}[H_j] = -b \cdot w + H_j \) and so

\[
\text{dist}(0, -b \cdot w + H_j) = \text{dist}(0, L[A_i]) = \text{dist}(0, A_i)
\]

contradicting \(\text{(c)} \).

Thus we proved that \(h_\xi \) satisfies \(\text{(b)} \). This finishes the proof of the lemma.

Theorem 3.2. If \(G \) is a transitive group of isometries of \(\mathbb{R}^n \) then \(\mathbb{R}^n \) is a countable union of \(G \)-absolutely negligible sets. In particular every \(\sigma \)-finite \(G \)-invariant measure on \(\mathbb{R}^n \) has a proper \(G \)-invariant extension.

Proof. Let \(\{N_k: k = 0, 1, 2, \ldots\} \) be the family given in Lemma 3.2 where \(H = G \). Then by Lemma 3.3 and Proposition 1.2(a) we have \(\mu_*(\bigcup_{r=0}^\infty g_r[N]) = 0 \) for every countable set \(\{g_r: r = 0, 1, 2, \ldots\} \subset G \) and every \(k = 0, 1, 2, \ldots \). Hence each \(N_k \) is \(G \)-absolutely negligible.

Generalizations, examples and problems

1. Let us remark first that although we have stated Theorem 3.1 only for measures on \(\mathbb{R}^n \) the theorem can be generalized for measures on \(K^n \) where \(K \) is either a real closed or algebraically closed field, since the theory of algebraic closed fields is also model complete (see [CK, p. 110]). Moreover, in the case of algebraically closed fields, the assumptions that \(H \subset (K(X_1, \ldots, X_n))^n \) may be dropped.

2. If \(X \subset K^n \) where \(K \) is as above and we define algebraic transformations on \(X \) in natural way, i.e., by functions generated by bijections of \(X \) from \((K(X_1, \ldots, X_n))^n\), then we can prove Theorem 3.1 for measures on \(X \). In particular we can conclude that it does not exist a maximal isometrically invariant extension of Lebesgue measure on \(n \)-dimensional sphere \(S^n \).
3. Theorem 3.1 and its generalizations as in 1 and 2 can be also proved for complex measures (see [Ru, Chapter 6]).

4. For the cardinal number \(\kappa \) we say that a measure \(\mu \) on a set \(X \) is \(\kappa \)-finite if \(X \) is a union of \(\kappa \) many sets of finite measure. Theorem 3.1 can be also generalized in the following way:

"Let \(\kappa \) be a cardinal number, \(G \) be a group of algebraic transformations of \(\mathbb{R}^n \), \(\gamma: G \to (0, \infty) \) and let \(\mu \) be a \(\gamma \)-invariant \(\kappa \)-finite measure on \(\mathbb{R}^n \). If \(G \) has a subset \(H \subset (\mathbb{R}(X_1, \ldots, X_n))^n \) of power greater than \(\kappa \) with the property

\[
\{a: h_1(a) = h_2(a)\} = \emptyset \quad \text{for every} \quad h_1, h_2 \in H, \quad h_1 \neq h_2,
\]

then \(\mu \) has a proper \(\gamma \)-invariant extension."

5. In 4 condition (*) can be replaced by the original condition (3.2) if we assume in addition that the measure \(\mu \) is \(\kappa^+ \)-additive.

6. We can also generalize the results from 4 and 5 in the way described in 1 and 2.

7. By 4, if in particular \(\kappa \) is less than continuum \(2^\omega \), \(G \) is a group of all isometries of \(\mathbb{R}^n \) and \(\mu \) is a \(\kappa \)-finite \(G \)-invariant measure then there exists a proper \(G \)-invariant extension of \(\mu \). However for \(\kappa \) equal to continuum \(2^\omega \) this cannot be proved as it was shown in [CP, Theorem 3.1].

8. An interesting example, suggested to the author by Jan Mycielski, can be obtained by considering a hyperbolic space \(\mathbb{H}^n \) for \(n \geq 2 \). If we identify \(\mathbb{H}^n \) with the model \(\{(a_1, \ldots, a_{n+1}) \in \mathbb{R}^{n+1}: a_{n+1} > 0\} \) then the group \(G \) of all isometries of \(\mathbb{H}^n \) is a group of algebraic transformations of \(\mathbb{R}^n \) and contains uncountably many translations. Moreover \(G \) is not a subgroup of a group of affine transformations of \(\mathbb{R}^n \) (see [MW or Be]). Let \(\nu \) be the hyperbolic invariant measure on \(\mathbb{H}^n \) induced by the Haar measure on \(G \). So \(\nu \) is a \(G \)-invariant \(\sigma \)-finite measure on \(\mathbb{H}^n \). Using the previous remarks and Corollary 3.1 we may conclude that the measure \(\nu \) does not have a maximal \(G \)-invariant extension.

9. Now we discuss the assumptions of Theorem 3.1, in particular condition (3.2).

First we prove that uncountability of \(H \subset G \) is essential (compare [Pe, Proposition 2.3, p. 14]).

Let \(G_0 \) be a group of all translations of \(\mathbb{R}^1 \) by rational numbers and let \(V \) be a Vitali set, i.e., \(V \cap H \) is a one element set for each orbit \(H \) of \(G_0 \). If we assume that there is a real measurable cardinal less than or equal to continuum (see [Je]) then there is a measure \(\nu_0: \mathcal{P}(V) \to [0, 1] \), where \(\mathcal{P}(V) \) is a family of all subsets of the set \(V \). Define a measure \(\mu: \mathcal{P}(\mathbb{R}^1) \to [0, \infty] \) by

\[
(4.1) \quad \mu(A) = \sum_{g \in G_0} \nu_0(g^{-1}[g[V] \cap A]).
\]

It is easy to see that \(\mu \) is \(G_0 \)-invariant and \(\sigma \)-finite. But \(\mu \) is defined on all subsets of \(\mathbb{R}^1 \) so it cannot have any proper extension.
10. It can be also proved that if there is a real measurable cardinal less than or equal to the continuum then for every countable group G of bijections of \mathbb{R}^1 there exists a G-invariant measure defined on $\mathcal{P}(\mathbb{R}^1)$, however this needs a little more careful definition.

11. The group G_0 defined in 9 is related to an interesting open problem of Andrzej Pelc (see [Pe, p. 27]).

Problem 1. Let μ be a G_0-invariant extension of Lebesgue measure on \mathbb{R}^1. Does there exist a proper G_0-invariant extension of μ?

12. The next example shows that we have to assume about G something more than only uncountability.

Example. Let G' be the group of all rotations of \mathbb{R}^2 about the origin and let $\nu: \mathcal{P}(\mathbb{R}^2) \to [0, \infty]$ be such that $\nu(A) = 1$ when $(0,0) \in A$ and $\nu(A) = 0$ otherwise. ν does not vanish at points, but still it is a G'-invariant measure. To correct this let μ and G_0 be as in Example 2 and let $\mu_1: \mathcal{P}(\mathbb{R}^3) \to [0, \infty]$ be a product measure of ν and μ, i.e., $\mu_1(A) = \mu(\{x: (0,0,x) \in A\})$. Then μ is σ-finite and G_1-invariant, where the group $G_1 = \{(g', g''): g' \in G', g'' \in G\}$ is uncountable. It is also obvious that μ_1 does not have any proper extension.

13. The reason that this example works is that μ_1 is concentrated on a set $S = \{0\} \times \{0\} \times \mathbb{R}$ while $g[S] = S$ for every $g \in G_1$ and the group $\{g|_S: g \in G_1\}$ is countable. This suggests the following

Definition. Let G be a group of bijections of a set X and μ be a G-invariant measure on X. We say that G is μ-essentially countable if there is a set $S \subset X$ such that $\mu(X \setminus S) = 0$, $g[S] = S$ for all $g \in G$ and the group $\{g|_S: g \in G\}$ is countable.

Problem 2. Let G be a group of algebraic transformations of \mathbb{R}^n and μ be a G-invariant σ-finite measure of \mathbb{R}^n such that G is not μ-essentially countable. Does μ have a proper G-invariant extension?

Recently the author has been informed that Piotr Zakrzewski proved the following result connected with the Problem 2: "If G is a group of isometries of \mathbb{R}^n and $\mu: \mathcal{P}(\mathbb{R}^n) \to [0, \infty]$ is G-invariant then the group G is μ-essentially countable."

14. In the next example we will construct a γ-invariant measure μ on \mathbb{R}^1 where γ will not be given in a classical way by Jacobian.

Example. Let $G_0 = \{x^{3^n}: n \in \mathbb{Z}\}$ be a group of transformations of \mathbb{R}^1 and let $V \subset \mathbb{R}^1 \setminus \{0\}$ be such that $(V \cup \{0\}) \cap H$ contains exactly one element for every orbit H of G. Let $\mu_0: \mathcal{P}(V) \to [0, 1]$ be a measure. For $n \in \mathbb{Z}$ let $g_n(x) = x^{3^n}$ and let $\mu_n: \mathcal{P}(g_n[V]) \to [0, 2^n]$ be defined by $\mu_n(g_n[A]) = 2^n \cdot \mu_0(A)$. Define
\[\mu : \mathcal{P}(\mathbb{R}^1) \to [0, \infty) \] by
\[\mu(A) = \sum_{n \in \mathbb{Z}} \mu_n([A_n]) = \sum_{n \in \mathbb{Z}} 2^n \cdot \mu_0(A_n) \]
where \(A_n \subset V \) are such that \(A \setminus \{0\} = \bigcup_{n \in \mathbb{Z}} g_n[A_n] \).

It is easy to see that \(\mu \) is a \(\sigma \)-finite measure. Moreover,
\[\mu(g_m[A]) = \mu \left(\bigcup_{n \in \mathbb{Z}} (g_m \circ g_n)[A_n] \right) = \sum_{n \in \mathbb{Z}} 2^{m+n} \cdot \mu_0(A_n) = 2^m \cdot \mu(A), \]
i.e., \(\mu \) is \(\gamma_0 \)-invariant where \(\gamma_0 : G_0 \to (0, \infty) \) is defined by \(\gamma_0(g_n) = 2^n \). It is easy to see that \(\gamma_0 \) has little to do with a classical Jacobian.

Our group \(G_0 \) is countable. But if we consider a measure \(\nu \) being a product measure of \(\mu \) and a one-dimensional Lebesgue measure \(m \) then \(\nu \) is a \(\sigma \)-finite \(\gamma \)-invariant where \(\gamma : G \to (0, \infty), G = \{(g_n, i) : g_n \in G_0 \text{ and } i \text{ is an isometry of } \mathbb{R}^1\}, \) and \(\gamma(g_n, i) = 2^n \). It is also obvious that \(G \) is uncountable. Moreover about \(\nu \) we can prove that if \(f \) is a homeomorphism of \(\mathbb{R}^2 \) and the system \(\langle \mathbb{R}^2, \mu_f, G_f, \gamma_f \rangle \) is induced by \(f \) from the system \(\langle \mathbb{R}^2, \mu, G, \gamma \rangle \) then \(G \) is not a subgroup of affine transformations of \(\mathbb{R}^2 \).

15. **Problem 3.** Is the assumption \(H \subset (\mathbb{R}(X_1, \ldots, X_n))^n \) essential in Theorem 3.1?

References

DEPARTMENT OF MATHEMATICS, WARSAW UNIVERSITY, WARSAW, POLAND

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LOUISVILLE, LOUISVILLE, KENTUCKY 40292

Current address: Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506