Algebraically invariant extensions of -finite measures on Euclidean space

Author:
Krzysztof Ciesielski

Journal:
Trans. Amer. Math. Soc. **318** (1990), 261-273

MSC:
Primary 28C10

DOI:
https://doi.org/10.1090/S0002-9947-1990-0946422-X

MathSciNet review:
946422

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a group of algebraic transformations of , i,e., the group of functions generated by bijections of of the form where each is a rational function with coefficients in in -variables. For a function we say that a measure on is -invariant when for every and every -measurable set . We will examine the question: "Does there exist a proper -invariant extension of We prove that if is -finite then such an extension exists whenever contains an uncountable subset of rational functions such that for all . In particular if is any uncountable subgroup of affine transformations of is the absolute value of the Jacobian of and is a -invariant extension of the -dimensional Lebesgue measure then has a proper -invariant extension. The conclusion remains true for any -finite measure if is a transitive group of isometries of . An easy strengthening of this last corollary gives also an answer to a problem of Harazisvili.

**[Be]**A. Beardon,*The geometry of discrete groups*, Springer-Verlag, New York, 1983. MR**698777 (85d:22026)****[CK]**C. Chang and H. Keisler,*Model theory*, Studies in Logic and Foundations of Math., North-Holland, 1977. MR**0491125 (58:10395)****[Ci]**K. Ciesielski,*How good is Lebesgue measure*?, Mathematical Intelligencer**11**(1989), 54-58. MR**994965 (90a:28001)****[CP]**K. Ciesielski and A. Pelc,*Extensions of invariant measures on Euclidean spaces*, Fund. Math.**125**(1985), 1-10. MR**813984 (87c:28017)****[GR]**R. C. Gunning and H. Rossi,*Analytic functions of several complex variables*, Prentice-Hall, Englewood Cliffs, N.J., 1965. MR**0180696 (31:4927)****[Ha1]**A. B. Harazisvili,*On Sierpinski's problem concerning strict extendibility of an invariant measure*, Soviet Math. Dokl.**18**(1977), 71-74.**[Ha2]**-,*Groups of transformations and absolutely negligible sets*, Bull. Acad. Sci. Georgian SSR**115**(1984). (Russian) MR**797907 (86h:54046)****[Hu]**A. Hulanicki,*Invariant extensions of the Lebesgue measure*, Fund. Math.**51**(1962), 111-115. MR**0142709 (26:278)****[Je]**T. Jech,*Set theory*, Academic Press, 1978. MR**506523 (80a:03062)****[La]**S. Lang,*Algebra*, Addison-Wesley, 1984. MR**0197234 (33:5416)****[MW]**J. Mycielski and S. Wagon,*Large free groups of isometries and their geometrical uses*, Enseign. Math.**30**(1984), 247-267. MR**767903 (86a:20042)****[Pe]**A. Pelc,*Invariant measures and ideals on discrete groups*, Dissertationes Math.**255**(1986). MR**872392 (88b:28025)****[Pk]**S. S. Pkhakadze,*teorii lebegovskoi miery*, Trudy Tbiliss. Mat. Inst.**25**(1958). (Russian)**[Ro]**A. Robinson,*Complete theories*, North-Holland, Amsterdam, 1956. MR**0075897 (17:817b)****[Ru]**W. Rudin,*Real and complex analysis*, McGraw-Hill, 1987. MR**924157 (88k:00002)****[Sz]**E. Szpilrajn,*Sur l'extension de la mesure lebesguienne*, Fund. Math.**25**(1935), 551-558. (French)**[We]**B. Weglorz,*Large invariant ideals on algebras*, Algebra Universalis**13**(1981), 41-55. MR**631408 (83f:04004)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
28C10

Retrieve articles in all journals with MSC: 28C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-0946422-X

Keywords:
Invariant -finite measures,
algebraic transformations of ,
isometries of

Article copyright:
© Copyright 1990
American Mathematical Society