Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Algebraically invariant extensions of $ \sigma$-finite measures on Euclidean space

Author: Krzysztof Ciesielski
Journal: Trans. Amer. Math. Soc. 318 (1990), 261-273
MSC: Primary 28C10
MathSciNet review: 946422
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a group of algebraic transformations of $ {{\mathbf{R}}^n}$, i,e., the group of functions generated by bijections of $ {{\mathbf{R}}^n}$ of the form $ ({f_1}, \ldots ,{f_n})$ where each $ {f_i}$ is a rational function with coefficients in $ {\mathbf{R}}$ in $ n$-variables. For a function $ \gamma :G \to (0,\infty )$ we say that a measure $ \mu $ on $ {{\mathbf{R}}^n}$ is $ \gamma $-invariant when $ \mu (g[A]) = \gamma (g)\cdot\mu (A)$ for every $ g \in G$ and every $ \mu $-measurable set $ A$. We will examine the question: "Does there exist a proper $ \gamma $-invariant extension of $ \mu ?$ We prove that if $ \mu $ is $ \sigma $-finite then such an extension exists whenever $ G$ contains an uncountable subset of rational functions $ H \subset {({\mathbf{R}}({X_1}, \ldots ,{X_n}))^n}$ such that $ \mu (\{ x:{h_1}(x) = {h_2}(x)\} ) = 0$ for all $ {h_1},{h_2} \in H,{h_1} \ne {h_2}$. In particular if $ G$ is any uncountable subgroup of affine transformations of $ {{\bf {R}}^n},\gamma (g{\text{)}}$ is the absolute value of the Jacobian of $ g \in G$ and $ \mu $ is a $ \gamma $-invariant extension of the $ n$-dimensional Lebesgue measure then $ \mu $ has a proper $ \gamma $-invariant extension. The conclusion remains true for any $ \sigma $-finite measure if $ G$ is a transitive group of isometries of $ {{\mathbf{R}}^n}$. An easy strengthening of this last corollary gives also an answer to a problem of Harazisvili.

References [Enhancements On Off] (What's this?)

  • [Be] Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777
  • [CK] Model theory, Handbook of mathematical logic, Part A, North-Holland, Amsterdam, 1977, pp. 3–313. Studies in Logic and the Foundations of Math., Vol. 90. With contributions by Jon Barwise, H. Jerome Keisler, Paul C. Eklof, Angus Macintyre, Michael Morley, K. D. Stroyan, M. Makkai, A. Kock and G. E. Reyes. MR 0491125
  • [Ci] Krzysztof Ciesielski, How good is Lebesgue measure?, Math. Intelligencer 11 (1989), no. 2, 54–58. MR 994965, 10.1007/BF03023824
  • [CP] Krzysztof Ciesielski and Andrzej Pelc, Extensions of invariant measures on Euclidean spaces, Fund. Math. 125 (1985), no. 1, 1–10. MR 813984
  • [GR] Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
  • [Ha1] A. B. Harazisvili, On Sierpinski's problem concerning strict extendibility of an invariant measure, Soviet Math. Dokl. 18 (1977), 71-74.
  • [Ha2] A. B. Kharazishvili, Groups of transformations and absolutely negligible sets, Soobshch. Akad. Nauk Gruzin. SSR 115 (1984), no. 3, 505–508 (Russian, with English and Georgian summaries). MR 797907
  • [Hu] A. Hulanicki, Invariant extensions of the Lebesgue measure, Fund. Math. 51 (1962/1963), 111–115. MR 0142709
  • [Je] Thomas Jech, Set theory, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Pure and Applied Mathematics. MR 506523
  • [La] Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
  • [MW] Jan Mycielski and Stan Wagon, Large free groups of isometries and their geometrical uses, Enseign. Math. (2) 30 (1984), no. 3-4, 247–267. MR 767903
  • [Pe] Andrzej Pelc, Invariant measures and ideals on discrete groups, Dissertationes Math. (Rozprawy Mat.) 255 (1986), 47. MR 872392
  • [Pk] S. S. Pkhakadze, $ K$ teorii lebegovskoi miery, Trudy Tbiliss. Mat. Inst. 25 (1958). (Russian)
  • [Ro] Abraham Robinson, Complete theories, North-Holland Publishing Co., Amsterdam, 1956. MR 0075897
  • [Ru] Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
  • [Sz] E. Szpilrajn, Sur l'extension de la mesure lebesguienne, Fund. Math. 25 (1935), 551-558. (French)
  • [We] B. Węglorz, Large invariant ideals on algebras, Algebra Universalis 13 (1981), no. 1, 41–55. MR 631408, 10.1007/BF02483821

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28C10

Retrieve articles in all journals with MSC: 28C10

Additional Information

Keywords: Invariant $ \sigma $-finite measures, algebraic transformations of $ {{\mathbf{R}}^n}$, isometries of $ {{\mathbf{R}}^n}$
Article copyright: © Copyright 1990 American Mathematical Society