Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hamilton-Jacobi equations with state constraints


Authors: I. Capuzzo-Dolcetta and P.-L. Lions
Journal: Trans. Amer. Math. Soc. 318 (1990), 643-683
MSC: Primary 49C20; Secondary 35F20
DOI: https://doi.org/10.1090/S0002-9947-1990-0951880-0
MathSciNet review: 951880
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper we consider Hamilton-Jacobi equations of the form $ H(x,u,\nabla u) = 0,\;x \in \Omega $, where $ \Omega $ is a bounded open subset of $ {R^n},H$ is a given continuous real-valued function of $ (x,s,p) \in \Omega \times R \times {R^n}$ and $ \nabla u$ is the gradient of the unknown function $ u$. We are interested in particular solutions of the above equation which are required to be supersolutions, in a suitable weak sense, of the same equation up to the boundary of $ \Omega $.

This requirement plays the role of a boundary condition. The main motivation for this kind of solution comes from deterministic optimal control and differential games problems with constraints on the state of the system, as well from related questions in constrained geodesics.


References [Enhancements On Off] (What's this?)

  • [1] G. Barles, Existence results for first-order Hamilton-Jacobi equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 325-340. MR 779871 (86g:35044)
  • [2] -, Remarques sur des résultats d'existence pour les equations de Hamilton-Jacobi du premier ordre, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 21-33. MR 781590 (86f:35046)
  • [3] G. Barles and P.-L. Lions, in preparation.
  • [4] A. Bensoussan, Méthodes de perturbation en controle optimal (to appear).
  • [5] I. Capuzzo-Dolcetta and M. G. Garroni, Oblique derivative problems and invariant measures, Ann. Scuola Norm. Sup. Pisa Ser. (4) 13 (1986), 689-720; announced in C. R. Acad. Sci. Paris Sér. I Math. 299 (1984). MR 880402 (88b:35033)
  • [6] M. G. Crandall, L. C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 262 (1984), 487-502. MR 732102 (86a:35031)
  • [7] M. G. Crandall, H. Ishii and P.-L. Lions, Uniqueness of viscosity solutions revisited.
  • [8] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42; announced in C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 183-186. MR 690039 (85g:35029)
  • [9] -, On existence and uniqueness of solutions of Hamilton-Jacobi equations, Nonlinear Anal. (1985).
  • [10] -, Hamilton-Jacobi equations in infinite dimensions. Parts I, II, III, J. Funct. Anal. 62 (1985), 379-396; 65 (1986), 368-495; 68 (1986), 214-247; announced in C. R. Acad Sci. Paris Sér. I Math. 300 (1985), 67-70.
  • [11] -, Remarks on the existence and uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations, Illinois J. Math. 31 (1987), 665-688; announced in C. R. Acad. Sci. Paris Sér. I. Math. 298 (1984), 217-220. MR 909790 (89m:35045)
  • [12] M. G. Crandall, P.-L. Lions and P. E. Souganidis, in preparation.
  • [13] M. G. Crandall and R. Newcomb, Viscosity solutions of Hamilton-Jacobi equations at the boundary, Proc. Amer. Math. Soc. 84 (1985), 283-290. MR 784180 (86f:35047)
  • [14] F. Gimbert, Problemes de Neumann quasilineaires, J. Funct. Anal. 62 (1985), 65-72. MR 790770 (86j:35065)
  • [15] R. Gonzalez and E. Rofman, On deterministic control problems: an approximation procedure for the optimal cost, Parts I and II, SIAM J. Control Optim. 23 (1985).
  • [16] H. Ishii, On the Perron's method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987), 369-384. MR 894587 (89a:35053)
  • [17] -, Uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations, Indiana Univ. Math. J. 33 (1984), 721-798. MR 756156 (85h:35057)
  • [18] -, Remarks on the existence of viscosity solutions of Hamilton-Jacobi equations, Bull. Fac. Sci. Engrg. Chuo Univ. 26 (1983), 5-24. MR 742691 (85k:35045)
  • [19] -, Existence and uniqueness of solutions of Hamilton-Jacobi equations, preprint.
  • [20] -, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of Eikonal type, preprint.
  • [21] R. Jensen, work in preparation and personal communication.
  • [22] J. M. Lasry and P.-L. Lions, work in preparation; announced in C. R. Acad. Sci. Paris Sér. I. Math. 299 (1987), 213-216. MR 762723 (85j:35064)
  • [23] P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations, Pitman, London, 1982; and Existence results for first order Hamilton-Jacobi equations, Richerche Mat. Napoli 32 (1983), 1-23. MR 667669 (84a:49038)
  • [24] -, Optimal control and viscosity solutions, Proc. Conf. Dynamic Programming, Rome, 1983, Springer, Berlin, 1985. MR 790691 (86k:49027)
  • [25] -, Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Math. J. 52 (1985), 793-820. MR 816386 (87h:35055)
  • [26] -, Quelques remarques sur les problemes elliptiques quasilineaires du second ordre, J. Anal. Math. 45 (1985), 234-254. MR 833413 (87f:35088)
  • [27] P.-L. Lions, G. Papanicolau and S. R. S. Varadhan, in preparation.
  • [28] P.-L. Lions and B. Perthame, Quasi-variational inequalities and ergodic impulse control, SIAM J. Control Optim. 24 (1986), 604-615. MR 846370 (87j:49019)
  • [29] B. Perthame and R. Sanders, The Neumann problem for fully nonlinear second order singular pertubation problems, M.R.C. Technical Summary Report, Univ. of Wisconsin-Madison, 1986.
  • [30] M. Robin, Long term average cost control problems for continuous time Markov processes: a survey, Acta Appl. Math. (1983). MR 727156 (85b:49021)
  • [31] -, On some impulse control problems with long run average cost, SIAM J. Control Optim. 19 (1981), 333-358. MR 613099 (82f:93091)
  • [32] M. H. Soner, Optimal control with state-space constraint. I, SIAM. J. Control Optim. 24 (1986). MR 838056 (87e:49029)
  • [33] P. E. Souganidis, Existence of viscosity solutions of Hamilton-Jacobi equations, J. Differential Equations (1984). MR 780496 (86i:35028)
  • [34] I. Capuzzo-Dolcetta and J. L. Menaldi, On the deterministic optimal stopping time problem in the ergodic case, Theory and Applications of Nonlinear Control Systems (C. I. Byones and A. Lindquist, eds.), North-Holland, Amsterdam, 1986. MR 935395 (89e:49020)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49C20, 35F20

Retrieve articles in all journals with MSC: 49C20, 35F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0951880-0
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society