Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Hausdorff dimension of harmonic measures on negatively curved manifolds


Authors: Yuri Kifer and François Ledrappier
Journal: Trans. Amer. Math. Soc. 318 (1990), 685-704
MSC: Primary 58G32; Secondary 60J60
MathSciNet review: 951889
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show by probabilistic means that harmonic measures on manifolds, whose curvature is sandwiched between two negative constants have positive Hausdorff dimensions. A lower bound for harmonic measures of open sets is derived, as well. We end with the results concerning the Hausdorff dimension of harmonic measures on universal covers of compact negatively curved manifolds.


References [Enhancements On Off] (What's this?)

  • [A] D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110
  • [AS] Michael T. Anderson and Richard Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. (2) 121 (1985), no. 3, 429–461. MR 794369, 10.2307/1971181
  • [B$ _{1}$] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math., vol. 470, Springer-Verlag, Berlin, 1985.
  • [B$ _{2}$] Rufus Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429–460. MR 0339281
  • [BR] Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181–202. MR 0380889
  • [Ch] Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
  • [CE] Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. North-Holland Mathematical Library, Vol. 9. MR 0458335
  • [Fr] Avner Friedman, Stochastic differential equations and applications. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Probability and Mathematical Statistics, Vol. 28. MR 0494490
  • [H] Eberhard Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939), 261–304 (German). MR 0001464
  • [HP] Morris W. Hirsch and Charles C. Pugh, Smoothness of horocycle foliations, J. Differential Geometry 10 (1975), 225–238. MR 0368077
  • [IW] Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, 2nd ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR 1011252
  • [Ka] Anatole Katok, Four applications of conformal equivalence to geometry and dynamics, Ergodic Theory Dynam. Systems 8* (1988), no. Charles Conley Memorial Issue, 139–152. MR 967635, 10.1017/S0143385700009391
  • [Ki] Y. Kifer, Brownian motion and positive harmonic functions on complete manifolds of nonpositive curvature, From local times to global geometry, control and physics (Coventry, 1984/85), Pitman Res. Notes Math. Ser., vol. 150, Longman Sci. Tech., Harlow, 1986, pp. 187–232. MR 894531
  • [Le$ _{1}$] François Ledrappier, Propriété de Poisson et courbure négative, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 5, 191–194 (French, with English summary). MR 903960
  • [Le$ _{2}$] F. Ledrappier, Ergodic properties of Brownian motion on covers of compact negatively-curve manifolds, Bol. Soc. Brasil. Mat. 19 (1988), no. 1, 115–140. MR 1018929, 10.1007/BF02584822
  • [LY] F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension, Ann. of Math. (2) 122 (1985), no. 3, 540–574. MR 819557, 10.2307/1971329
  • [Mo] Jürgen Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591. MR 0159138
  • [Se] James Serrin, On the Harnack inequality for linear elliptic equations, J. Analyse Math. 4 (1955/56), 292–308. MR 0081415
  • [Si] Ja. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21–64 (Russian). MR 0399421
  • [Y] Lai Sang Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynamical Systems 2 (1982), no. 1, 109–124. MR 684248

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58G32, 60J60

Retrieve articles in all journals with MSC: 58G32, 60J60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0951889-7
Article copyright: © Copyright 1990 American Mathematical Society