Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Hausdorff dimension of harmonic measures on negatively curved manifolds

Authors: Yuri Kifer and François Ledrappier
Journal: Trans. Amer. Math. Soc. 318 (1990), 685-704
MSC: Primary 58G32; Secondary 60J60
MathSciNet review: 951889
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show by probabilistic means that harmonic measures on manifolds, whose curvature is sandwiched between two negative constants have positive Hausdorff dimensions. A lower bound for harmonic measures of open sets is derived, as well. We end with the results concerning the Hausdorff dimension of harmonic measures on universal covers of compact negatively curved manifolds.

References [Enhancements On Off] (What's this?)

  • [A] D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math. 90 (1967). MR 0224110 (36:7157)
  • [AS] M. T. Anderson and R. Shoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. 121 (1985), 429-461. MR 794369 (87a:58151)
  • [B$ _{1}$] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math., vol. 470, Springer-Verlag, Berlin, 1985.
  • [B$ _{2}$] -, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429-460. MR 0339281 (49:4041)
  • [BR] R. Bowen and D. Ruelle, The ergodic theory of Axiom- A flows, Invent. Math. 29 (1975), 181-202. MR 0380889 (52:1786)
  • [Ch] I. Chavel, Eigenvalues in Riemannian geometry, Academic Press, Orlando, 1984. MR 768584 (86g:58140)
  • [CE] J. Cheeger and D. G. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975. MR 0458335 (56:16538)
  • [Fr] A. Friedman, Stochastic differential equations and applications, vols. 1, 2, Academic Press, New York, 1975. MR 0494490 (58:13350a)
  • [H] E. Hopf, Statistik der geodätischen Linien in mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Viss. Leipzig 91 (1939), 261-304. MR 0001464 (1:243a)
  • [HP] M. Hirsch and C. Pugh, Smoothness of horocycle foliations, J. Differential Geom. 10 (1975), 225-238. MR 0368077 (51:4319)
  • [IW] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland, Kodansha, 1981. MR 1011252 (90m:60069)
  • [Ka] A. Katok, Four applications of conformal equivalence to geometry and dynamics, Ergodic Theory Dynamical Systems 8 $ ^{\ast}$ (1988), 139-159. MR 967635 (89m:58165)
  • [Ki] Yu. Kifer, Brownian motion and positive harmonic functions on complete manifolds of nonpositive curvature, Pitman Research Notes in Math., vol. 150, Longman, Harlow, 1986, pp. 187-232. MR 894531 (88m:58204)
  • [Le$ _{1}$] F. Ledrappier, Propriété de Poisson et courbure negative, C.R. Acad. Sci. Paris 305 (1987), 191-194. MR 903960 (88m:58205)
  • [Le$ _{2}$] -, Ergodic properties of the Brownian motion on covers of compact negatively curved manifolds, Bol. Soc. Brasil. Mat. (to appear). MR 1018929 (91e:58210)
  • [LY] F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms, Part II: Relations between entropy, exponents and dimension, Ann. of Math. 122 (1985), 540-574. MR 819557 (87i:58101b)
  • [Mo] Y. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591. MR 0159138 (28:2356)
  • [Se] J. Serrin, On the Harnack inequality for linear elliptic equations, J. Analyse Math. 4 (1954/56), 292-308. MR 0081415 (18:398f)
  • [Si] Ya. G. Sinai, Gibbs measures in ergodic theory, Russian Math. Surveys 27 (1972), 21-69. MR 0399421 (53:3265)
  • [Y] L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynamical Systems 2 (1982), 109-129. MR 684248 (84h:58087)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58G32, 60J60

Retrieve articles in all journals with MSC: 58G32, 60J60

Additional Information

Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society