Ergodic and mixing properties of equilibrium measures for Markov processes

Author:
Enrique D. Andjel

Journal:
Trans. Amer. Math. Soc. **318** (1990), 601-614

MSC:
Primary 60J25; Secondary 28D05, 60K35

MathSciNet review:
953535

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the semigroup corresponding to a Markov process on a metric space . Suppose commutes with a homeomorphism of . We prove that under certain conditions, an equilibrium measure for the process is ergodic under . We also show that, under stronger conditions this measure must be mixing under . Several applications of these results are given.

**[1]**Michael Aizenman,*Translation invariance and instability of phase coexistence in the two-dimensional Ising system*, Comm. Math. Phys.**73**(1980), no. 1, 83–94. MR**573615****[2]**R. L. Dobrushin (1968),*The description of a random field by means of conditional probabilities and conditions of regularity*, Theory Probab. Appl.**13**, 197-224.**[3]**-, (1970),*Prescribing a system of random variables by the help of conditional distributions*, Theory Probab. Appl.**15**, 458-486.**[4]**R. L. Dobrushin and S. B. Shlosman,*Constructive criterion for the uniqueness of Gibbs field*, Statistical physics and dynamical systems (Köszeg, 1984) Progr. Phys., vol. 10, Birkhäuser Boston, Boston, MA, 1985, pp. 347–370. MR**821306****[5]**E. B. Dynkin,*Sufficient statistics and extreme points*, Ann. Probab.**6**(1978), no. 5, 705–730. MR**0518321****[6]**Stewart N. Ethier and Thomas G. Kurtz,*Markov processes*, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. Characterization and convergence. MR**838085****[7]**H. Föllmer,*A covariance estimate for Gibbs measures*, J. Funct. Anal.**46**(1982), no. 3, 387–395. MR**661878**, 10.1016/0022-1236(82)90053-2**[8]**Y. Higuchi,*On the absence of non-translation invariant Gibbs states for the two-dimensional Ising model*, Random fields, Vol. I, II (Esztergom, 1979) Colloq. Math. Soc. János Bolyai, vol. 27, North-Holland, Amsterdam-New York, 1981, pp. 517–534. MR**712693****[9]**Yasunari Higuchi and Tokuzo Shiga,*Some results on Markov processes of infinite lattice spin systems*, J. Math. Kyoto Univ.**15**(1975), 211–229. MR**0370831****[10]**Richard Holley,*Free energy in a Markovian model of a lattice spin system*, Comm. Math. Phys.**23**(1971), 87–99. MR**0292449****[11]**R. Holley and D. Stroock,*Diffusions on an infinite-dimensional torus*, J. Funct. Anal.**42**(1981), no. 1, 29–63. MR**620579**, 10.1016/0022-1236(81)90047-1**[12]**Thomas M. Liggett,*Interacting particle systems*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 276, Springer-Verlag, New York, 1985. MR**776231****[13]**Norman S. Matloff,*Ergodicity conditions for a dissonant voting model*, Ann. Probability**5**(1977), no. 3, 371–386. MR**0445646****[14]**David Ruelle,*Thermodynamic formalism*, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley Publishing Co., Reading, Mass., 1978. The mathematical structures of classical equilibrium statistical mechanics; With a foreword by Giovanni Gallavotti and Gian-Carlo Rota. MR**511655**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
60J25,
28D05,
60K35

Retrieve articles in all journals with MSC: 60J25, 28D05, 60K35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-0953535-5

Keywords:
Markov process,
interacting particle system,
ergodic,
mixing

Article copyright:
© Copyright 1990
American Mathematical Society