Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Simple Lie algebras of characteristic $ p$ with dependent roots


Authors: Georgia Benkart and J. Marshall Osborn
Journal: Trans. Amer. Math. Soc. 318 (1990), 783-807
MSC: Primary 17B20; Secondary 17B50
DOI: https://doi.org/10.1090/S0002-9947-1990-0955488-2
MathSciNet review: 955488
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate finite dimensional simple Lie algebras over an algebraically closed field $ {\mathbf{F}}$ of characteristic $ p \geqslant 7$ having a Cartan subalgebra $ H$ whose roots are dependent over $ {\mathbf{F}}$. We show that $ H$ must be one-dimensional or for some root $ \alpha $ relative to $ H$ there is a $ 1$-section $ {L^{(\alpha )}}$ such that the core of $ {L^{(\alpha )}}$ is a simple Lie algebra of Cartan type $ H{(2:\underline m :\Phi )^{(2)}}$ or $ W(1:\underline n )$ for some $ n > 1$. The results we obtain have applications to studying the local behavior of simple Lie algebras and to classifying simple Lie algebras which have a Cartan subalgebra of dimension less than $ p - 2$.


References [Enhancements On Off] (What's this?)

  • [Be] G. M. Benkart, Cartan subalgebras in Lie algebras of Cartan type, Lie Algebras and Related Topics, Canad. Math. Soc. Conf. Proc. 5 (D. J. Britten, F. W. Lemire, and R. V. Moody, eds.), Amer. Math. Soc., Providence, R.I., 1986, pp. 157-187. MR 832198 (87f:17005)
  • [BO1] G. M. Benkart and J. M. Osborn, Representations of rank one Lie algebras of characteristic $ p$, Lie Algebras and Related Topics (D. J. Winter, ed.), Lecture Notes in Math., vol. 933, Springer-Verlag, Berlin, Heidelberg and New York, 1982, pp. 1-37. MR 675104 (84c:17004)
  • [BO2] -, Rank one Lie algebras, Ann. of Math. (2) 119 (1984), 437-463. MR 744860 (86g:17006)
  • [BO3] -, Toral rank one Lie algebras, J. Algebra 115 (1988), 238-250. MR 937612 (89d:17016)
  • [BIO] G. M. Benkart, I. M. Isaacs and J. M. Osborn, Lie algebras with self-centralizing ad-nilpotent elements, J. Algebra 57 (1979), 279-309. MR 533800 (80i:17006)
  • [Bl1] R. E. Block, On the Mills-Seligman axioms for Lie algebras of classical type, Trans. Amer. Math. Soc. 121 (1966), 378-392. MR 0188356 (32:5795)
  • [Bl2] -, Determination of the differentiably simple rings with a minimal ideal, Ann. of Math. (2) 90 (1969), 433-459. MR 0251088 (40:4319)
  • [BW] R. E. Block and R. L. Wilson, The simple Lie $ p$-algebras of rank two, Ann. of Math. (2) 115 (1982), 93-168. MR 644017 (83j:17008)
  • [Br] G. Brown, Cartan subalgebras in Zassenhaus Lie algebras, Canad. J. Math. 27 (1975) 1011-1021. MR 0401851 (53:5678)
  • [H] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Math., Springer-Verlag, New York, 1972. MR 0323842 (48:2197)
  • [J] N. Jacobson, Lie algebras, Wiley, New York, 1962. MR 0143793 (26:1345)
  • [K] A. I. Kostrikin, Irreducible graded Lie algebras with the component $ {L_0} = {W_1}$, Ural Gos. Univ. Mat. Zap. 7 (1969/70), no. 3, 92-103. (Russian) MR 0294426 (45:3496)
  • [We] B. Ju. Weisfeiler, On subalgebras of simple Lie algebras of characteristic $ p > 0$, Trans. Amer. Math. Soc. 286 (1984), 471-503. MR 760972 (86h:17012)
  • [Wil1] R. L. Wilson, A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristic, J. Algebra 40 (1976), 418-465. MR 0412239 (54:366)
  • [Wil2] -, Simple Lie algebras of toral rank one, Trans. Amer. Math. Soc. 236 (1978), 287-295. MR 0463252 (57:3205)
  • [Win] D. J. Winter, Cartan decompositions and Engel subalgebra triangulability, J. Algebra 62 (1980), 400-417. MR 563237 (81e:17005)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B20, 17B50

Retrieve articles in all journals with MSC: 17B20, 17B50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0955488-2
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society