Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An invariant of regular isotopy


Author: Louis H. Kauffman
Journal: Trans. Amer. Math. Soc. 318 (1990), 417-471
MSC: Primary 57M25
DOI: https://doi.org/10.1090/S0002-9947-1990-0958895-7
MathSciNet review: 958895
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper studies a two-variable Laurent polynomial invariant of regular isotopy for classical unoriented knots and links. This invariant is denoted $ {L_K}$ for a link $ K$, and it satisfies the axioms:

1. Regularly isotopic links receive the same polynomial.

2. $ {L_{[{\text{unk}}]}} = 1$.

3. $ {L_{[{\text{unk}}]}} = aL,\qquad {L_{[{\text{unk}}]}} = {a^{ - 1}}L$.

4. $ {L_{[{\text{unk}}]}} + {L_{[{\text{unk]}}}} = z({L_{[{\text{unk]}}}} + {L_{[{\text{unk]}}}})$.

Small diagrams indicate otherwise identical parts of larger diagrams.

Regular isotopy is the equivalence relation generated by the Reidemeister moves of type II and type III. Invariants of ambient isotopy are obtained from $ L$ by writhe-normalization.


References [Enhancements On Off] (What's this?)

  • 1. Y. Akutsu and M. Wadati, Exactly solvable models and new link polynomials. I. $ N$-state vertex modles, J. Phys. Soc. Japan 56 (1987), 3039-3051. MR 914721 (89g:82085)
  • [1] J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 20 (1923), 275-306. MR 1501429
  • [2] R. Ball and M. L. Mehta, Sequence of invariants for knots and links, J. Physique 42 (1981), 1193-1199. MR 630350 (82h:57005)
  • [3] J. S. Birman, Braids, links and mapping class groups, Ann. of Math. Stud., no. 82, Princeton Univ. Press, Princeton, N. J., 1976. MR 0375281 (51:11477)
  • [4] J. S. Birman and H. Wenzel, Braids, link polynomials and a new algebra, preprint, 1986.
  • [5] G. Burde and H. Zieschang, Knots, De Gruyter Studies in Math. no. 5, De Gruyter, 1985. MR 808776 (87b:57004)
  • [6] R. D. Brandt, W. B. R. Lickorish and K. C. Millett, A polynomial invariant for unoriented knots and links, Invent. Math. 74 (1986), 563-573. MR 837528 (87m:57003)
  • [7] R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. 38 (1937).
  • [8] J. H. Conway, An enumeration of knots and links and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon Press, New York, 1970, pp. 329-358. MR 0258014 (41:2661)
  • [9] R. H. Crowell and R. H. Fox, Introduction to knot theory, Blaisdell, 1963. MR 0146828 (26:4348)
  • [10] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. C. Millett and A. Ocneanu [HOMFLY], A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239-246. MR 776477 (86e:57007)
  • [11] W. Graueb, Die semilinearen abbildungen, S. B. Heidelberg Adad. Wiss. Math.-Nat. Kl., 1950, pp. 205-272. MR 0042709 (13:152a)
  • [12] C. F. Ho, A new polynomial invariant for knots and links--preliminary report, Abstracts Amer. Math. Soc. 6 (1985), 300.
  • [13] V. F. R. Jones, A new knot polynomial and von Neumann algebras, Notices Amer. Math. Soc. (1985). MR 830613 (87d:57007)
  • [14] -, A polynomial invariant for links via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985), 103-112.
  • [15] -, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388. MR 908150 (89c:46092)
  • [15] 1. V. F. R. Jones, On knot invariants related to some statistical mechanical models, Pacific J. Math. 137 (1989). MR 990215 (89m:57005)
  • [16] T. Kanenobu and M. Sakuma, A note on the Kauffman polynomial, preprint, 1986.
  • [17] L. H. Kauffman, The Conway polynomial, Topology 20 (1980), 101-108. MR 592573 (81m:57004)
  • [18] -, Formal knot theory, Princeton Univ. Press Math. Notes, no. 30, Princeton Univ. Press, 1983.
  • [19] -, On knots, Ann. of Math. Stud., no. 115, Princeton Univ. Press, Princeton, N. J., 1987.
  • [20] -, State models and the Jones polynomial, Topology 26 (1987), 395-407. MR 899057 (88f:57006)
  • [21] -, New invariants in the theory of knots (lectures given in Rome, June 1986), (to appear).
  • [22] -, New invariants in the theory of knots, Amer. Math. Monthly Vol. 95 (1988), 195-242. MR 935433 (89d:57005)
  • [23] -, Statistical mechanics and the Jones polynomial, Proc. Conf. on Artin's Braid Group, Santa Cruz, Calif., 1986, Contemp. Math., vol. 78, Amer. Math. Soc., Providence, R.I., 1988, pp. 263-297. MR 975085 (89j:57002)
  • [24] -, An invariant of regular isotopy, Announcement, 1985.
  • [25] -, Knots and physics (in preparation).
  • [26] L. H. Kauffman and P. Vogel, Link polynomials and a graphical calculus, Announcement, 1987.
  • [26] 1. L. H. Kauffman, Knots, abstract tensors and the Yang-Baxter equation, Knots, Topology and Quantum Field Theories - Proceedings of the Johns Hopkins Workshop on Current Problems in Particle Theory 13, Florence (1989). Edited by L. Lusanna, World Scientific, 1989, pp. 179-334. MR 1146944 (92k:57014)
  • [27] M. Kidwell, On the degree of the Brandt-Lickorish-Millett-Ho polynomial of a link, Proc. Amer. Math. Soc. 100 (1987), 755-761. MR 894450 (89b:57003)
  • [28] T. P. Kirkman, The enumeration, description and construction of knots with fewer than $ 10$ crossings, Trans. Roy. Soc. Edinburgh 32 (1865), 281-309.
  • [29] W. B. R. Lickorish and K. C. Millett, A polynomial invariant for oriented links, Topology 26 (1987), 107-141. MR 880512 (88b:57012)
  • [31] W. B. R. Lickorish, A relationship between link polynomials, Math. Proc. Cambridge Philos. Soc. 100 (1986), 109-112. MR 838656 (87g:57010)
  • [32] A. S. Lipson, Smith's prize essay, Univ. of Cambridge, 1987.
  • [33] C. N. Little, Non-alternate $ + - $ knots, Trans. Roy. Soc. Edinburgh 35 (1889), 663-664.
  • [34] H. R. Morton, Seifert circles and knot polynomials, Math. Proc. Cambridge Philos. Soc. 99 (1986), 107-109. MR 809504 (87c:57006)
  • [35] H. R. Morton and H. B. Short, Calculating the $ 2$-variable polynomial for knots presented as closed braids, preprint, 1986.
  • [36] H. Murakami, A formula for the two-variable Jones polynomial, Topology 26 409-412. MR 919727 (89c:57006)
  • [37] J. Murakami, Kauffman polynomial of links and representation theory, preprint, 1986. MR 927059 (89c:57007)
  • [38] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), 187-194. MR 895570 (88m:57010)
  • [39] -, Jones polynomials and classical conjectures in knot theory. II, preprint, 1986.
  • [40] J. Przytycki, Conway formulas for Jones-Conway and Kauffman polynomials, preprint, 1986.
  • [41] K. Reidemeister, Knotentheorie, Chelsea, New York, 1948.
  • [42] D. Rolfsen, Knots and links, Publish or Perish, Berkeley, Calif., 1976. MR 0515288 (58:24236)
  • [43] P. G. Tait, On knots. I, II, III, Scientific Papers, Vol. I, Cambridge Univ. Press, London, 1898, pp. 273-347.
  • [44] M. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 297-309. MR 899051 (88h:57007)
  • [45] -, Kaufmann's polynomial and alternating links, Topology 27 (1988), 311-318. 1986. MR 963633 (90c:57005)
  • [45] 1. V. G. Turaev, The Yang-Baxter equations and invariants of links, Invent. Math. 92 (1988), 527-553. MR 939474 (89e:57003)
  • [46] B. Trace, On the Reidemeister moves of a classical knot, Proc. Amer. Math. Soc. 89 (1983). MR 719004 (85f:57005)
  • [47] H. Whitney, On regular closed curves in the plane, Comp. Math. 4 (1937), 276-284. MR 1556973
  • [48] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399. MR 990772 (90h:57009)
  • [49] D. Yetter, Markov algebras, Proc. Conf. on Artin's Braid Group, Santa Cruz, Calif., 1986, Contemp. Math., vol. 78, Amer. Math. Soc., Providence, R.I., 1988, pp. 705-730. MR 975104 (90h:57011)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M25

Retrieve articles in all journals with MSC: 57M25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0958895-7
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society