Generalized balanced tournament designs

Author:
E. R. Lamken

Journal:
Trans. Amer. Math. Soc. **318** (1990), 473-490

MSC:
Primary 05B15

MathSciNet review:
978380

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A generalized balanced tournament design, , defined on a -set , is an arrangement of the blocks of a - defined on into an array such that (1) every element of is contained in precisely one cell of each column, and (2) every element of is contained in at most cells of each row. In this paper, we introduce and describe connections between these designs and several other types of combinatorial designs. We also show how to use to construct resolvable, near resolvable, doubly resolvable and doubly near resolvable .

**[1]**Ronald D. Baker,*Resolvable BIBD and SOLS*, Discrete Math.**44**(1983), no. 1, 13–29. MR**687892**, 10.1016/0012-365X(83)90003-1**[2]**De Meng Chen and Lie Zhu,*Existence of resolvable balanced incomplete block designs with 𝑘=5 and 𝜆=1*, Ars Combin.**24**(1987), 185–192. MR**917975****[3]**D. J. Curran and S. A. Vanstone,*Doubly resolvable designs from generalized Bhaskar Rao designs*, Proceedings of the Oberwolfach Meeting “Kombinatorik” (1986), 1989, pp. 49–63. MR**974812**, 10.1016/0012-365X(88)90132-X**[4]**J. H. Dinitz and D. R. Stinson,*The construction and uses of frames*, Ars Combin.**10**(1980), 31–53. MR**598897****[5]**R. Fuji-Hara and S. A. Vanstone,*On the spectrum of doubly resolvable Kirkman systems*, Proceedings of the Eleventh Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1980), Vol. I, 1980, pp. 399–407. MR**608442****[6]**Haim Hanani,*On resolvable balanced incomplete block designs*, J. Combinatorial Theory Ser. A**17**(1974), 275–289. MR**0354405****[7]**Haim Hanani, D. K. Ray-Chaudhuri, and Richard M. Wilson,*On resolvable designs*, Discrete Math.**3**(1972), 343–357. MR**0309752****[8]**E. R. Lamken,*A note on partitioned balanced tournament designs*, Ars Combin.**24**(1987), 5–16. MR**917953****[9]**E. R. Lamken,*On classes of doubly resolvable (𝑣,3,2)-BIBDs from balanced tournament designs*, Ars Combin.**24**(1987), 85–91. MR**917963****[10]**-,*Constructions for generalized balanced tournament designs*, (submitted).**[11]**-,*Existence results for generalized balanced tournament designs with block size*, in preparation.**[12]**-,*The existence of doubly resolvable*-, in preparation.**[13]**-, -*complementary frames and doubly near resolvable*-, Discrete Math. (to appear).**[14]**-,*Coverings, orthogonally resolvable designs and related combinatorial configurations*, Ph.D Thesis, University of Michigan, 1983.**[15]**E. R. Lamken and S. A. Vanstone,*The existence of factored balanced tournament designs*, Ars Combin.**19**(1985), 157–159. MR**810271****[16]**E. R. Lamken and S. A. Vanstone,*Partitioned balanced tournament designs of side 4𝑛+1*, Ars Combin.**20**(1985), 29–44. MR**824846****[17]**-,*The existence of partitioned balanced tournament designs of side*, Ann. Discrete Math.**34**(1987), 319-338.**[18]**E. R. Lamken and S. A. Vanstone,*The existence of partitioned balanced tournament designs*, Combinatorial design theory, North-Holland Math. Stud., vol. 149, North-Holland, Amsterdam, 1987, pp. 339–352. MR**920658**, 10.1016/S0304-0208(08)72900-1**[19]**-,*Balanced tournament designs and resolvable*-, Discrete Math. (to appear).**[20]**E. R. Lamken and S. A. Vanstone,*Balanced tournament designs and related topics*, Discrete Math.**77**(1989), no. 1-3, 159–176. Combinatorial designs—a tribute to Haim Hanani. MR**1022458**, 10.1016/0012-365X(89)90358-0**[21]**E. R. Lamken and S. A. Vanstone,*Orthogonal resolutions in odd balanced tournament designs*, Graphs Combin.**4**(1988), no. 3, 241–255. MR**949293**, 10.1007/BF01864165**[22]**E. R. Lamken and S. A. Vanstone,*Balanced tournament designs with almost orthogonal resolutions*, J. Austral. Math. Soc. Ser. A**49**(1990), no. 2, 175–195. MR**1061040****[23]**E. R. Lamken and S. A. Vanstone,*The existence of a class of Kirkman squares of index 2*, J. Austral. Math. Soc. Ser. A**44**(1988), no. 1, 33–41. MR**914401****[24]**-,*Existence results for doubly near resolvable*-, (submitted).**[25]**-,*The existence of**: main constructions*, Utilitas Math.**27**(1987), 111-130.**[26]**E. R. Lamken and S. A. Vanstone,*The existence of 𝐾𝑆₂(𝑣;𝜇,𝜆): special constructions*, Utilitas Math.**27**(1985), 131–155. MR**804375****[27]**R. C. Mullin and W. D. Wallis,*The existence of Room squares*, Aequationes Math.**13**(1975), no. 1/2, 1–7. MR**0398864****[28]**D. K. Ray-Chaudhuri and Richard M. Wilson,*Solution of Kirkman’s schoolgirl problem*, Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1971, pp. 187–203. MR**0314644****[29]**Rolf Rees and D. R. Stinson,*On resolvable group-divisible designs with block size 3*, Ars Combin.**23**(1987), 107–120. MR**886946****[30]**S. A. Vanstone and A. Rosa,*Starter-adder techniques for Kirkman squares and Kirkman cubes of small sides*, Ars Combin.**14**(1982), 199–212. MR**683988****[31]**Barbara Rokowska,*Resolvable systems of 8-tuples*, J. Statist. Plann. Inference**9**(1984), no. 1, 131–141. MR**735017**, 10.1016/0378-3758(84)90050-8**[32]**P. J. Schellenberg, G. H. J. Van Rees, and S. A. Vanstone,*The existence of balanced tournament designs*, Ars Combinatoria**3**(1977), 303–317. MR**0505803****[33]**Paul Smith,*A doubly divisible nearly Kirkman system*, Discrete Math.**18**(1977), no. 1, 93–96. MR**0465897****[34]**D. R. Stinson,*Room squares with maximum empty subarrays*, Ars Combin.**20**(1985), 159–166. MR**824857****[35]**D. R. Stinson,*Frames for Kirkman triple systems*, Discrete Math.**65**(1987), no. 3, 289–300. MR**897653**, 10.1016/0012-365X(87)90060-4**[36]**D. R. Stinson,*The equivalence of certain incomplete transversal designs and frames*, Ars Combin.**22**(1986), 81–87. MR**867736****[37]**-,*Some classes of frames and the spectrum of skew room squares and Howell designs*, Ph.D. Thesis, University of Waterloo, 1981.**[38]**S. A. Vanstone,*Doubly resolvable designs*, Discrete Math.**29**(1980), no. 1, 77–86. MR**553651**, 10.1016/0012-365X(90)90288-S**[39]**S. A. Vanstone,*On mutually orthogonal resolutions and near-resolutions*, Algebraic and geometric combinatorics, North-Holland Math. Stud., vol. 65, North-Holland, Amsterdam, 1982, pp. 357–369. MR**772609**, 10.1016/S0304-0208(08)73279-1

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
05B15

Retrieve articles in all journals with MSC: 05B15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-0978380-6

Article copyright:
© Copyright 1990
American Mathematical Society