Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Symmetric derivates, scattered, and semi-scattered sets
HTML articles powered by AMS MathViewer

by Chris Freiling PDF
Trans. Amer. Math. Soc. 318 (1990), 705-720 Request permission

Abstract:

We call a set right scattered (left scattered) if every nonempty subset contains a point isolated on the right (left). We establish the following monotonicity theorem for the symmetric derivative. If a real function $f$ has a nonnegative lower symmetric derivate on an open interval $I$, then there is a nondecreasing function $g$ such that $f(x) > g(x)$ on a right scattered set and $f(x) < g(x)$ on a left scattered set. Furthermore, if $R$ is any right scattered set and $L$ is any left scattered set disjoint with $R$, then there is a function which is positive on $R$, negative on $L$, zero otherwise, and which has a zero lower symmetric derivate everywhere. We obtain some consequence including an analogue of the Mean Value Theorem and a new proof of an old theorem of Charzynski.
References
  • C. L. Belna, M. J. Evans, and P. D. Humke, Symmetric monotonicity, Acta Math. Acad. Sci. Hungar. 34 (1979), no. 1-2, 17–22. MR 546713, DOI 10.1007/BF01902587
  • Z. Charzynski, Sur les fonctions dont la derivee symetrique est partout finie, Fund. Math. 21 (1933), 214-225. M. Chlebik, On symmetrically continuous functions, Real Anal. Exchange 13 (1987-88), 34.
  • Roy O. Davies, The plane is the union of three rectilinearly accessible sets, Real Anal. Exchange 4 (1978/79), no. 1, 97–101. MR 525017
  • Roy O. Davies and Fred Galvin, Solution to Query $5$, Real Anal. Exchange 2 (1976), 74-75.
  • M. J. Evans, A symmetric condition for monotonicity, Bull. Inst. Math. Acad. Sinica 6 (1978), no. 1, 85–91. MR 499025
  • Editorial Staff, Concerning Query $37$, Real Anal. Exchange 4 (1978-79), 82-83.
  • James Foran, A chain rule for the approximate derivative and change of variables for the ${\cal D}$-integral, Real Anal. Exchange 8 (1982/83), no. 2, 443–454. MR 700195
  • David Gale and F. M. Stewart, Infinite games with perfect information, Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, Princeton University Press, Princeton, N.J., 1953, pp. 245–266. MR 0054922
  • F. Hausdorff, Problem $62$, Fund. Math. 25 (1935), 578. A. Khintchine, Recherches sur la structure des fonctions measurables, Fund. Math. 9 (1927), 212-279.
  • Lee Larson, The symmetric derivative, Trans. Amer. Math. Soc. 277 (1983), no. 2, 589–599. MR 694378, DOI 10.1090/S0002-9947-1983-0694378-6
  • Lee Larson, Symmetric real analysis: a survey, Real Anal. Exchange 9 (1983/84), no. 1, 154–178. MR 742782
  • J. McGrotty, A theorem on complete sets, J. London Math. Soc. 37 (1962), 338–340. MR 140635, DOI 10.1112/jlms/s1-37.1.338
  • Natanson, Theory of functions of a real variable, Ungar, New York, 1964.
  • David Preiss, A note on symmetrically continuous functions, Časopis Pěst. Mat. 96 (1971), 262–264, 300 (English, with Czech summary). MR 0306411
  • I. Z. Ruzsa, Locally symmetric functions, Real Anal. Exchange 4 (1978-1979), 84-86. W. Sierpiński, Sur une hypothese de M. Mazurkiewicz, Fund. Math. 11 (1928), 148 E. Szpilrajn, Remarque sur la derivee symetrique, Fund. Math. 21 (1931), 226-228.
  • B. S. Thomson, On full covering properties, Real Anal. Exchange 6 (1980/81), no. 1, 77–93. MR 606543
  • Jaromír Uher, Symmetrically differentiable functions are differentiable almost everywhere, Real Anal. Exchange 8 (1982/83), no. 1, 253–261. MR 694513
  • Clifford E. Weil, Monotonicity, convexity and symmetric derivates, Trans. Amer. Math. Soc. 221 (1976), no. 1, 225–237. MR 401994, DOI 10.1090/S0002-9947-1976-0401994-1
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A24, 26A48
  • Retrieve articles in all journals with MSC: 26A24, 26A48
Additional Information
  • © Copyright 1990 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 318 (1990), 705-720
  • MSC: Primary 26A24; Secondary 26A48
  • DOI: https://doi.org/10.1090/S0002-9947-1990-0989574-8
  • MathSciNet review: 989574