Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Domain-independent upper bounds for eigenvalues of elliptic operators


Author: Stephen M. Hook
Journal: Trans. Amer. Math. Soc. 318 (1990), 615-642
MSC: Primary 35J25; Secondary 35P15, 47F05
DOI: https://doi.org/10.1090/S0002-9947-1990-0994167-2
MathSciNet review: 994167
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Omega \subseteq {\mathbb{R}^m}$ be a bounded open set, $ \partial \Omega $ its boundary and $ \Delta $ the Laplacian on $ {\mathbb{R}^m}$. Consider the elliptic differential equation:

(1)

$\displaystyle - \Delta u = \lambda u\quad {\text{in}}\;\Omega ;\qquad u = 0\quad {\text{on}}\;\partial \Omega .$

It is known that the eigenvalues, $ {\lambda _i}$, of (1) satisfy

(2)

$\displaystyle \sum\limits_{i = 1}^n {\frac{{{\lambda _i}}} {{{\lambda _{n + 1}} - {\lambda _i}}}} \geqslant \frac{{mn}} {4}$

provided that $ {\lambda _{n + 1}} > {\lambda _n}$.

In this paper we abstract the method used by Hile and Protter [2] to establish (2) and apply the method to a variety of second-order elliptic problems, in particular, to all constant coefficient problems. We then consider a variety of higher-order problems and establish an extension of (2) for problem (1) where the Laplacian is replaced by a more general operator in a Hilbert space.


References [Enhancements On Off] (What's this?)

  • [1] Zu-chi Chen, Inequalities for eigenvalues of a class of polyharmonic operators, Applicable Anal. 27 (1988), 289-314. MR 936473 (89g:31009)
  • [2] G. N. Hile and M. H. Protter, Inequalities for eigenvalues of the Laplacian, Indiana Univ. Math. J. 29 (1980), 523-538. MR 578204 (82c:35052)
  • [3] G. N. Hile and R. Z. Yeh, Inequalities for eigenvalues of the biharmonic operator, Pacific J. Math. 112 (1984), 115-133. MR 739143 (85k:35170)
  • [4] S. M. Hook, Inequalities for eigenvalues of self-adjoint operators, Doctoral Dissertation, University of California, Berkeley, 1986.
  • [5] -, Inequalities for eigenvalues of selfadjoint operators, Trans. Amer. Math. Soc. 318 (1990), 237-259. MR 943604 (90f:47024)
  • [6] -, Bounds for the fundamental frequencies of an elastic medium, Preprint.
  • [7] B. Kawohl and G. Sweers, Remarks on eigenvalues and eigenfunctions of a special elliptic system, Z. Angew. Math. Phys. 38 (1987), 730-740. MR 917475 (89c:35125)
  • [8] L. E. Payne, G. Polya and H. F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. Phys. 35 (1956), 289-298. MR 0084696 (18:905c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J25, 35P15, 47F05

Retrieve articles in all journals with MSC: 35J25, 35P15, 47F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0994167-2
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society