Local approximation by certain spaces of exponential polynomials, approximation order of exponential box splines, and related interpolation problems

Authors:
N. Dyn and A. Ron

Journal:
Trans. Amer. Math. Soc. **319** (1990), 381-403

MSC:
Primary 41A15

DOI:
https://doi.org/10.1090/S0002-9947-1990-0956032-6

MathSciNet review:
956032

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Local approximation order to smooth complex valued functions by a finite dimensional space , spanned by certain products of exponentials by polynomials, is investigated. The results obtained, together with a suitable quasi-interpolation scheme, are used for the derivation of the approximation order attained by the linear span of translates of an exponential box spline.

The analysis of a typical space is based here on the identification of its dual with a certain space of multivariate polynomials. This point of view allows us to solve a class of multivariate interpolation problems by the polynomials from , with interpolation data characterized by the structure of , and to construct bases of corresponding to the interpolation problem.

**[BH]**C. de Boor and K. Hàllig,*-splines from parallelepipeds*, J. Anal. Math.**42**(1982/3), 99-115. MR**729403 (86d:41008)****[BR]**A. Ben-Artzi and A. Ron,*Translates of exponential box splines and their related spaces*, Trans. Amer. Math. Soc.**309**(1988), 683-709. MR**961608 (89m:41008)****[CD]**C. K. Chui and H. Diamond,*A natural formulation of quasi-interpolation by multivariate splines*, Proc. Amer. Math. Soc.**99**(1987), 643-646. MR**877032 (88g:41010)****[CY]**K. C. Chung and T. H. Yao,*On lattices admitting unique Lagrange interpolation*, SIAM J. Numer. Anal.**14**(1977), 735-743. MR**0445158 (56:3502)****[DM]**W. Dahmen and C. A. Micchelli,*On the local linear independence of translates of a box spline*, Studia Math.**82**(1985), 243-263. MR**825481 (87k:41008)****[DM]**-,*On multivariate**-splines*, Adv. in Math.**76**(1989), 33-93. MR**1004486 (90m:41020)****[GM]**M. Gasca and J. I. Maeztu,*On Lagrange and Hermite interpolation in*, Numer. Math.**39**(1982), 1-14. MR**664533 (83g:65012)****[R]**A. Ron,*Exponential box splines*, Constr. Approx.**4**(1988), 357-378. MR**956173 (89j:41017)****[R]**-,*Linear independence for the integer translates of an exponential box spline*, Rocky Mountain J. Math. (to appear).**[S]**L. L. Schumaker,*Spline functions: Basic theory*, Wiley, New York, 1981. MR**606200 (82j:41001)****[SF]**G. Strang and G. Fix,*A Fourier analysis of the finite element variational method*, C.I.M.E. II Cilo 1971, Constructive Aspects of Functional Analysis (G. Geymonet, ed.), 1973, pp. 793-840.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
41A15

Retrieve articles in all journals with MSC: 41A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-0956032-6

Keywords:
Box splines,
exponential box spline,
approximation order,
quasi-interpolants,
interpolation,
local approximation,
multivariate

Article copyright:
© Copyright 1990
American Mathematical Society