Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A notion of rank for unitary representations of general linear groups


Author: Roberto Scaramuzzi
Journal: Trans. Amer. Math. Soc. 319 (1990), 349-379
MSC: Primary 22E50; Secondary 22E46
DOI: https://doi.org/10.1090/S0002-9947-1990-0958900-8
MathSciNet review: 958900
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A notion of rank for unitary representations of general linear groups over a locally compact, nondiscrete field is defined. Rank measures how singular a representation is, when restricted to the unipotent radical of a maximal parabolic subgroup. Irreducible representations of small rank are classified. It is shown how rank determines to a large extent the asymptotic behavior of matrix coefficients of the representations.


References [Enhancements On Off] (What's this?)

  • [B] J. Bernstein, $ P$-invariant distributions of $ {\text{GL}}(n)$ and the classification of unitary representations of $ {\text{GL}}(n)$ (non-Archimedean case), Lie Group Representations. II, Proceedings, University of Maryland, Springer, 1983, pp. 50-102. MR 748505 (86b:22028)
  • [BZ] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive $ p$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441-472. MR 0579172 (58:28310)
  • [F1] J. Fell, The dual spaces of $ {C^ * }$-algebras, Trans. Amer. Math. Soc. 94 (1960), 364-403. MR 0146681 (26:4201)
  • [F2] -, Weak containment and induced representations of groups, Canad. J. Math. 14 (1962), 237-268. MR 0150241 (27:242)
  • [HC] Harish-Chandra, Discrete series for semisimple Lie groups. II, Acta Math. 116 (1966), 1-111. MR 0219666 (36:2745)
  • [H1] R. Howe, On a notion of rank of unitary representations of the classical groups, Harmonic Analysis and Group Representations (Proc. C.I.M.E. II circlo 1980) (A. Figa-Talamanca, ed.), Liguori, 1980, pp. 223-332. MR 777342 (86j:22016)
  • [H2] -, $ \theta$-series and invariant theory, Proc. Sympos. Pure Math., vol. 33, part I, Amer. Math. Soc., Providence, R.I., 1979, pp. 275-286. MR 546602 (81f:22034)
  • [H3] -, Small unitary representations of classical groups, preprint.
  • [H4] -, The Fourier transform and germs of characters (case of $ {\text{GL}}(n)$ over a $ p$-adic field), Math. Ann. 208 (1974), 305-322. MR 0342645 (49:7391)
  • [HM] R. Howe and C. Moore, Asymptotic properties of unitary representations, J. Funct. Anal. 32 (1979), 72-96. MR 533220 (80g:22017)
  • [K] D. Kazhdan, Connection of dual space of a group with the structure of its closed subgroups, Functional Anal. Appl. 1 (1967), 63-65. MR 0209390 (35:288)
  • [M1] G. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265-301. MR 0098328 (20:4789)
  • [M2] -, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101-139. MR 0044536 (13:434a)
  • [R] M. Rieffel, Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner, Studies in Analysis (G. C. Rota, ed.), Adv. in Math. Suppl. Stud., vol. 4, Academic Press, New York, pp. 43-82. MR 546802 (81h:22004)
  • [Sa1] S. Sahi, Spherical unitary representations of general linear groups over local fields, doctoral dissertation, Yale University, 1985.
  • [Sa2] -, On Kirillov's conjecture for Archimedean fields, preprint.
  • [S] R. Scaramuzzi, Unitary representations of small rank of general linear groups, doctoral dissertation, Yale University, 1985.
  • [Si] A. Silberger, Introduction to harmonic analysis on reductive $ p$-adic groups, Princeton Univ. Press, Princeton, N.J., 1979. MR 544991 (81m:22025)
  • [St] E. Stein, Analysis in matrix space and some new representations of $ {\text{SL}}(n,{\mathbf{C}})$, Ann. of Math. (2) 86 (1967), 461-490. MR 0219670 (36:2749)
  • [T] M. Tadić, Solution of the uniterizability problem for general linear group (non-Archimedean case), preprint.
  • [V] D. Vogan, The unitary dual of $ {\text{GL}}(n)$ over an Archimedean field, preprint. MR 827363 (87i:22042)
  • [VN] J. von Neumann, Die Eindeutgkeit der Schràderschen Operatores, Math. Ann. 104 (1931), 570-578.
  • [Wg] S. P. Wang, The dual space of semi-simple Lie groups, Amer. J. Math. 91 (1969), 921-937. MR 0259023 (41:3665)
  • [W] G. Warner, Harmonic analysis on semi-simple Lie groups, Springer, 1972.
  • [Z] G. J. Zuckerman, Continuous cohomology and unitary representations of real reductive groups, Ann. of Math. (2) 107 (1978), 495-516. MR 496844 (81c:22025)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E50, 22E46

Retrieve articles in all journals with MSC: 22E50, 22E46


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0958900-8
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society