A notion of rank for unitary representations of general linear groups

Author:
Roberto Scaramuzzi

Journal:
Trans. Amer. Math. Soc. **319** (1990), 349-379

MSC:
Primary 22E50; Secondary 22E46

MathSciNet review:
958900

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A notion of rank for unitary representations of general linear groups over a locally compact, nondiscrete field is defined. Rank measures how singular a representation is, when restricted to the unipotent radical of a maximal parabolic subgroup. Irreducible representations of small rank are classified. It is shown how rank determines to a large extent the asymptotic behavior of matrix coefficients of the representations.

**[B]**Joseph N. Bernstein,*𝑃-invariant distributions on 𝐺𝐿(𝑁) and the classification of unitary representations of 𝐺𝐿(𝑁) (non-Archimedean case)*, Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 50–102. MR**748505**, 10.1007/BFb0073145**[BZ]**I. N. Bernstein and A. V. Zelevinsky,*Induced representations of reductive 𝔭-adic groups. I*, Ann. Sci. École Norm. Sup. (4)**10**(1977), no. 4, 441–472. MR**0579172****[F1]**J. M. G. Fell,*The dual spaces of 𝐶*-algebras*, Trans. Amer. Math. Soc.**94**(1960), 365–403. MR**0146681**, 10.1090/S0002-9947-1960-0146681-0**[F2]**J. M. G. Fell,*Weak containment and induced representations of groups*, Canad. J. Math.**14**(1962), 237–268. MR**0150241****[HC]**Harish-Chandra,*Discrete series for semisimple Lie groups. II. Explicit determination of the characters*, Acta Math.**116**(1966), 1–111. MR**0219666****[H1]**Roger Howe,*On a notion of rank for unitary representations of the classical groups*, Harmonic analysis and group representations, Liguori, Naples, 1982, pp. 223–331. MR**777342****[H2]**R. Howe,*𝜃-series and invariant theory*, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 275–285. MR**546602****[H3]**-,*Small unitary representations of classical groups*, preprint.**[H4]**Roger Howe,*The Fourier transform and germs of characters (case of 𝐺𝑙_{𝑛} over a 𝑝-adic field)*, Math. Ann.**208**(1974), 305–322. MR**0342645****[HM]**Roger E. Howe and Calvin C. Moore,*Asymptotic properties of unitary representations*, J. Funct. Anal.**32**(1979), no. 1, 72–96. MR**533220**, 10.1016/0022-1236(79)90078-8**[K]**D. A. Každan,*On the connection of the dual space of a group with the structure of its closed subgroups*, Funkcional. Anal. i Priložen.**1**(1967), 71–74 (Russian). MR**0209390****[M1]**George W. Mackey,*Unitary representations of group extensions. I*, Acta Math.**99**(1958), 265–311. MR**0098328****[M2]**George W. Mackey,*Induced representations of locally compact groups. I*, Ann. of Math. (2)**55**(1952), 101–139. MR**0044536****[R]**Marc A. Rieffel,*Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner*, Studies in analysis, Adv. in Math. Suppl. Stud., vol. 4, Academic Press, New York-London, 1979, pp. 43–82. MR**546802****[Sa1]**S. Sahi,*Spherical unitary representations of general linear groups over local fields*, doctoral dissertation, Yale University, 1985.**[Sa2]**-,*On Kirillov's conjecture for Archimedean fields*, preprint.**[S]**R. Scaramuzzi,*Unitary representations of small rank of general linear groups*, doctoral dissertation, Yale University, 1985.**[Si]**Allan J. Silberger,*Introduction to harmonic analysis on reductive 𝑝-adic groups*, Mathematical Notes, vol. 23, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971–1973. MR**544991****[St]**E. M. Stein,*Analysis in matrix spaces and some new representations of 𝑆𝐿(𝑁,𝐶)*, Ann. of Math. (2)**86**(1967), 461–490. MR**0219670****[T]**M. Tadić,*Solution of the uniterizability problem for general linear group (non-Archimedean case)*, preprint.**[V]**David A. Vogan Jr.,*The unitary dual of 𝐺𝐿(𝑛) over an Archimedean field*, Invent. Math.**83**(1986), no. 3, 449–505. MR**827363**, 10.1007/BF01394418**[VN]**J. von Neumann,*Die Eindeutgkeit der Schràderschen Operatores*, Math. Ann.**104**(1931), 570-578.**[Wg]**S. P. Wang,*The dual space of semi-simple Lie groups*, Amer. J. Math.**91**(1969), 921–937. MR**0259023****[W]**G. Warner,*Harmonic analysis on semi-simple Lie groups*, Springer, 1972.**[Z]**Gregg J. Zuckerman,*Continuous cohomology and unitary representations of real reductive groups*, Ann. of Math. (2)**107**(1978), no. 3, 495–516. MR**496844**, 10.2307/1971126

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
22E50,
22E46

Retrieve articles in all journals with MSC: 22E50, 22E46

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1990-0958900-8

Article copyright:
© Copyright 1990
American Mathematical Society