Asymptotic stability of planar rarefaction waves for viscous conservation laws in several dimensions

Author:
Zhou Ping Xin

Journal:
Trans. Amer. Math. Soc. **319** (1990), 805-820

MSC:
Primary 35L65; Secondary 76L05, 76N10

DOI:
https://doi.org/10.1090/S0002-9947-1990-0970270-8

MathSciNet review:
970270

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper concerns the large time behavior toward planar rarefaction waves of the solutions for scalar viscous conservation laws in several dimensions. It is shown that a planar rarefaction wave is nonlinearly stable in the sense that it is an asymptotic attractor for the viscous conservation law. This is proved by using a stability result of rarefaction wave for scalar viscous conservation laws in one dimension and an elementary -energy method.

**[1]**E. Harabetian,*Rarefaction and large time behavior for parabolic equations and monotone schemes*, Comm. Math. Phys.**114**(1988), 527-536. MR**929127 (89d:35084)****[2]**J. Goodman,*Nonlinear asymptotic stability of viscous shock profile for conservation laws*, Arch. Rational Mech. Anal.**95**(1986), 325-344. MR**853782 (88b:35127)****[3]**-,*Stability of viscous scalar shock fronts in several dimensions*, Trans. Amer. Math. Soc.**311**(1989), 683-695. MR**978372 (89j:35059)****[4]**A. M. Il'in and O. A. Oleinik,*Behavior of the solution of the Cauchy problem for certain quasilinear equations for unbounded increase of the time*, Amer. Math. Soc. Transl. (2)**42**(1964), 19-23.**[5]**S. Kawashima and A. Mastumura,*Asymptotic stability of traveling wave solutions of system for one-dimensional gas motion*, Comm. Math. Phys.**101**(1985), 97-127. MR**814544 (87h:35035)****[6]**T. P. Liu,*Linear and nonlinear large time behavior of general systems of hyperbolic conservation laws*, Comm. Pure Appl. Math.**30**(1977), 767-796. MR**0499781 (58:17556)****[7]**T. P. Liu and Z. P. Xin,*Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations*, Comm. Math. Phys.**118**(1988), 451-465. MR**958806 (89i:35112)****[8]**A. Majda,*Compressible fluid flow and systems of conservation laws in several space variables*, Springer-Verlag, New York, 1984. MR**748308 (85e:35077)****[9]**A. Mastumura,*Asymptotics toward rarefaction wave of solutions of the Broadwell model of a discrete velocity gas*, Japan J. Appl. Math.**4**(1987), 489-502. MR**925621 (89h:35044)****[10]**A. Mastumura and K. Nishihara,*Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas*, Japan J. Appl. Math.**3**(1986), 1-13. MR**899210 (88e:35173)****[11]**J. Smoller,*Shock waves and reaction diffusion equations*, Springer-Verlag. New York and Berlin, 1983. MR**688146 (84d:35002)****[12]**Z. P. Xin,*Asymptotic stability of rarefaction waves for**viscous hyperbolic conservation laws*, J. Differential Equations**73**(1988), 45-77. MR**938214 (89h:35203)****[13]**-,*Asymptotic stability of rarefaction waves for**viscous hyperbolic conservation laws*--*the two modes case*, J. Differential Equations**78**(1989), 191-219. MR**992146 (90h:35155)****[14]**O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva,*Linear and quasi-linear equations of parabolic type*, Amer. Math. Soc., Providence, R. I., 1968.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35L65,
76L05,
76N10

Retrieve articles in all journals with MSC: 35L65, 76L05, 76N10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-0970270-8

Keywords:
Nonlinear stable,
viscous conservation law,
planar rarefaction wave,
-energy method

Article copyright:
© Copyright 1990
American Mathematical Society