\(\Lambda(q) \) PROCESSES

RON C. BLEI

Abstract. Motivated by some classical notions in harmonic analysis, \(\Lambda(q) \) processes are introduced in the context of a study of stochastic interdependencies. An extension of a classical theorem of Salem and Zygmund regarding random Fourier series is obtained. The Littlewood exponent of \(\Lambda(q) \) processes is estimated and, in some archetypical cases, computed.

0. Introduction

In [1], we considered stochastic processes with respect to which every deterministic function on \([0, 1]\) was stochastically integrable. Such processes \(X \) were normed by

\[
\|X\| = \sup \left\{ E \left| \sum_{j=1}^{N} \epsilon_j (X(t_j) - X(t_{j-1})) \right| : N > 0, \ \epsilon_j = \pm 1, \ j = 1, \ldots, N, \right\}
\]

and were said to have finite expectation (cf. [1, §1]). One of the basic questions arising in this context is how to determine, in some precise sense, a degree of interdependencies between increments of a process with finite expectation. This problem was the motivation behind \(\alpha \)-chaos [3] as well as the subsequent computation of its Littlewood exponent [4]; the present paper is a continuation of that work. A description of the intuition underlying results of [3, 4], as well as the present paper, can be found in [5].

We first set the stage. Throughout, \((\Omega, \mathcal{A}, P)\) will denote a probability space. Let \(E = \{X_j\}_{j \in \mathbb{N}} \) be an orthonormal system of random variables in \(L^2(\Omega, P) \), and define

\[
\phi_E(x) = \sup \left\{ P \left(\left| \sum_j \sigma_j X_j \right| \geq x \middle| \sum_j \sigma_j^2 = 1 \right) : x > 0. \right\}
\]
In [3], we said that \(E \) was a sub- \(\alpha \)-system if
\[
\delta_E(\alpha) \equiv \lim_{x \to \infty} (\ln(1/\phi_E(x))/x^{2/\alpha}) > 0,
\]
and an \(\alpha \)-system if
\[
\theta_E \equiv \inf\{\gamma : \delta_E(\gamma) > 0\} = \alpha.
\]
For infinite \(E \), \(\theta_E \in [1, \infty] \). An archetypical example of an \(\alpha \)-system is produced by taking a system of independent symmetric uniformly bounded random variables \(\{X_j\}_{j \in \mathbb{N}} \), fixing an \(\alpha \)-dimensional lattice set \(F \subset \mathbb{N}^d \), and defining
\[
E = \{X_{j_1} \cdots X_{j_d}\}_{(j_1, \ldots, j_d) \in F}
\]
for which \(\theta_E = \alpha \) (e.g., [2]). In the present paper, we bring the case \(\theta_E = \infty \) into a sharper focus.

Definition 1.1. An orthonormal system \(\{X_j\}_{j \in \mathbb{N}} = E \) is a sub-\(\Lambda(q) \) system if
\[
\lambda_E(q) = \lim_{x \to \infty} (\phi_E(x)/x^q) < \infty,
\]
and a \(\Lambda(q) \) system if
\[
\sup\{p : \lambda_E(p) < \infty\} = q.
\]

An example of an infinite \(\Lambda(q) \) system is produced by taking infinitely many independent copies of a symmetric random variable with finite \(L^q \)-norm but infinite \(L^{q+\epsilon} \)-norm for all \(\epsilon > 0 \).

The notions above are naturally transported to a framework of stochastic processes. Throughout, we shall restrict attention to processes \(X \) with orthogonal increments whose variance is given by \(E|X(t) - X(s)|^2 = t - s, \ 0 \leq s < t \leq 1 \) (note: \(\|X\| \leq 1 \)). In [3], we defined \(X \) to be an \(\alpha \)-chaos when
\[
\sup\{\theta_E : E \text{ is a system of normalized increments of } X\} = \alpha.
\]
The Wiener process is an archetypical example of a 1-chaos, while Wiener’s homogeneous chaos of order \(k \), \(k \) a positive integer, is an example of a \(k \)-chaos (cf. [12], [9], [3, Remark 4.2(1)]). For noninteger \(\alpha \), examples of \(\alpha \)-chaos are produced canonically via the existence of \(\alpha \)-dimensional lattice sets [3, Theorem 4.1].

Definition 1.2. A process \(X \) with orthogonal increments and \(E|X(t) - X(s)|^2 = t - s, \ 0 \leq s < t \leq 1 \) is a sub-\(\Lambda(q) \) process if
\[
\beta_X(q) \equiv \sup\{\lambda_E(q) : E \text{ is a system of normalized increments of } X\}
\]
is finite, and a \(\Lambda(q) \) process if
\[
\sup\{p : \beta_X(p) < \infty\} = q.
\]

Clearly, an \(\alpha \)-chaos is a sub-\(\Lambda(q) \) process for all \(q < \infty \). Indeed, the \(\alpha \)-scale of [3] can be viewed as a resolution of the “right end-point (\(q = \infty \))” of the \(q \)-scale in the framework of the present paper.

Since every sub-\(\Lambda(q) \) process is a stochastic integrator in the sense of [1, §2], we easily obtain (and state without proof)
Lemma 1.3. Suppose X is a process with orthogonal increments and
\[E|X(t) - X(s)|^2 = t - s, \quad 0 \leq s < t \leq 1 \]
(in particular, $E \int_{[0,1]} f dX|^2 \leq \|f\|^2_2$ for all $f \in L^2([0, 1], dt)$). Let
\[\tilde{X}(n) = \int_{[0,1]} e_n dX, \quad n \in \mathbb{N}, \]
be the transform of X relative to $\{e_n\}_{n \in \mathbb{N}}$, a given orthonormal basis of $L^2([0, 1], dt)$ (cf. [1, §2]). Then, X is a sub-$\Lambda(q)$ process if and only if $\{\tilde{X}(n)\}_{n \in \mathbb{N}}$ is a sub-$\Lambda(q)$ system.

Corollary 1.4. $\Lambda(q)$ processes exist for every $2 \leq q < \infty$.

Proof. Let $E = \{X_n\}_{n \in \mathbb{N}}$ be a $\Lambda(q)$ system. Let U be the unitary map from $L^2([0, 1], dt)$ onto the $L^2(\Omega, \mathcal{F}, \mathbb{P})$-closure of the linear span of E determined by
\[Ue_n = X_n, \quad n \in \mathbb{N}, \]
where $\{e_n\}_{n \in \mathbb{N}}$ is an orthonormal basis of $L^2([0, 1], dt)$. Define
\[X(t) = Ul_{[0,1]}, \quad 0 \leq t \leq 1. \]
It is easy to see that X satisfies the hypotheses of Lemma 1.3 and that its transform relative to $\{e_n\}_{n \in \mathbb{N}}$ is given by
\[\tilde{X}(n) = X_n, \quad n \in \mathbb{N}, \]
and so, X is a $\Lambda(q)$ process. □

The main result of the next section (Theorem 2.3) is a sufficient condition for a.s. continuity of a random function represented as a Fourier series randomized by a sub-$\Lambda(q)$ system. This theorem, an analogue of [3, Theorem 2.5], is an extension of a classical theorem due to Salem and Zygmund [11]. As an easy consequence, we obtain that the sample paths of sub-$\Lambda(q)$ processes are almost surely continuous and, when $q > 2$, of unbounded variation (Corollary 2.4).

In §3 we estimate Littlewood exponents of sub-$\Lambda(q)$ and $\Lambda(q)$ processes. We recall some definitions [4]. Let X be any stochastic process on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define its “$p$th variation” by
\[\|X\|_{(p)} = \sup \left\{ \left(\sum_{j,k} \left| \mathbf{E}1_{A_j} (X(t_k) - X(t_{k-1})) \right|^p \right)^{1/p} : \{A_j\}_{j \in \mathbb{N}} \subset \mathcal{F}, \right\}, \]
and its Littlewood exponent by
\[l_X = \inf \{p : \|X\|_{(p)} < \infty \}. \]
A straightforward application of Littlewood's classical inequality [8] implies that if \(X \) has finite expectation then \(l_X \leq 4/3 \). An adaptation of Littlewood's example (finite Fourier transform), showing that 4/3 is best possible in the inequality of [8], establishes that there are processes \(X \) for which \(\|X\| < \infty \), and \(l_X = 4/3 \). At the other end of the scale, \(l_X = 1 \) when \(X \) is an \(\alpha \)-chaos [3, Theorem 2].\(^1\) The main result of §3 in this paper (Theorem 3.1), filling a gap between 1 and 4/3, is that

(i) \(l_X \leq (q + 2)/(q + 1) \) whenever \(X \) is a sub-\(\Lambda(q) \) process, and

(ii) for every \(q \geq 2 \), there are \(\Lambda(q) \) processes for which \(l_X = (q + 2)/(q + 1) \).

The proof of part (ii) of Theorem 3.1 is based on Bourgain's recent solution of the \(\Lambda(q) \)-set problem [6]. The question whether for every \(\Lambda(q) \) process \(X \), \(l_X = (q + 2)/(q + 1) \) is an open problem.

2. Sub-\(\Lambda(q) \) systems and random Fourier series

Lemma 2.1. Let \((\mathcal{F}, \mu) \) be a probability space, and let \(\mathcal{D} \) be a linear subspace of \(L^\infty(\mathcal{F}, \mu) \) so that

\[
\rho(\mathcal{D}) = \rho = \inf \{ \mu(|f| \geq \|f\|_\infty/2) : f \in \mathcal{D} \} > 0.
\]

Suppose \{\(X_j \)\}\(_{j \in \mathbb{N}} \) = \(E \subset L^2(\Omega, \mathbb{P}) \) is a sub-\(\Lambda(q) \) system. Let \{\(f_j \)\} be a finite collection of functions in \(\mathcal{D} \) so that

\[
(2.1) \quad \left\| \sum_j |f_j|^2 \right\|_\infty \leq 1,
\]

and define the random function

\[
g = \sum_j f_j \otimes X_j.
\]

Then,

\[
P(\|g\|_\infty > x) < \left(2^q \lambda_q(x)/\rho \right)x^q,
\]

\((\|g\|_\infty \equiv \text{ess sup}_{s \in \mathcal{F}} |\sum_j f_j(s)X_j|) \)

Proof. By (2.1), we have for all \(s \in \mathcal{F} \) and all \(x > 0 \),

\[
P(|g(s)| > x) = E 1_{\{ |g(s)| > x \}} \leq \lambda_q(x)/x^q.
\]

Integrating the inequality above and applying Fubini's Theorem, we obtain

\[
E \int_\mathcal{F} 1_{\{ |g(s)| > x \}} d\mu(s) \leq \lambda_q(x)/x^q,
\]

\[
E \int_{\{ s : |g(s)| \geq \|g\|_\infty/2 \}} 1_{\{ |g(s)| > x \}} d\mu(s) \leq \rho E 1_{\{ |g| > 2x \}} \leq \rho \lambda_q(x)/x^q
\]

which implies the conclusion of the lemma. \(\Box \)

\(^1\)When \(X \) is a simple process, \(l_X = 0 \). When \(l_X < 1 \), stochastic integration with respect to \(X \) reduces to usual integration over \(\Omega \times [0, 1] \). From our point of view, the interesting range of \(l_X \) is \([1, 4/3]\).
The following is an immediate consequence.

Lemma 2.2. Suppose \{X_j\}_{j \in \mathbb{N}} = E is a sub-\(\Lambda(q)\) system. Fix an arbitrary positive integer \(N\), let \(T_N\) denote the space of trigonometric polynomials on \([0, 1]\) of degree \(N\), and let \{\{f_j\} \subset T_N\) be finite. Then

\[
P \left(\left\| \sum_j f_j \otimes X_j \right\|_\infty \geq D x \left(\left\| \sum_j |f_j|^2 \right\|_\infty \right)^{1/2} \right) \leq 2\pi N/x^q
\]

for all \(x > 0\), where \(D > 0\) depends only on \(\lambda_E(q)\).

Proof. By Bernstein's theorem (e.g. [7, Exercise 1.2.12]), \(\rho(T_N) \geq 1/2\pi N\).

Now apply Lemma 2.1. \(\square\)

The following is an extension of [3, Theorem 2.5].

Theorem 2.3. Let \{X_j\}_{j \in \mathbb{N}} be a sub-\(\Lambda(q)\) system. Define blocks of integers

\[
B_k = \{\pm[k^{q/2}], \pm[(k^{q/2}) + 1], \ldots, \pm(\lfloor (k + 1)^{q/2} \rfloor - 1)\}, \quad k = 1, 2, \ldots
\]

(\lfloor \cdot \rfloor denotes the "closest integer" function). Let \{a_n\}_{n=-\infty}^{\infty} be a sequence of scalars so that

\[
\sum_{k=1}^{\infty} (\ln k) s_k < \infty.
\]

Then, \(\sum_{n=-\infty}^{\infty} a_n X_n e^{2\pi i n t}\) is almost surely a Fourier series of a continuous function on \([0, 1]\).

Proof. Define blocks of integers

\[
C_k = \{\pm 2^k, \pm(2^k + 1), \ldots, \pm(2^{k+1} - 1)\},
\]

define the corresponding random trigonometric polynomials

\[
p_k(t) = \sum_{n \in C_k} a_n X_n e^{2\pi i n t},
\]

and consider the events

\[
E_k = \left\{ \left\| p_k \right\|_\infty \geq D (2^{k/q}) k \left(\sum_{n \in C_k} |a_n|^2 \right)^{1/2} \right\}, \quad k = 1, 2, \ldots
\]

\((D > 0\) is the constant appearing in Lemma 2.2). By Lemma 2.2,

\[
P(E_k) \leq 2\pi / k^q.
\]
Therefore, by the Borel-Cantelli lemma, we obtain \(P(\lim E_k) = 0 \) which implies that

\[
(2.4) \quad (\|p_k\|_\infty)_{k=1}^{\infty} \text{ is } \mathcal{O}\left((2^{k/q})k \left(\sum_{n \in C_k} |a_n|^2 \right)^{1/2} \right) \text{ almost surely.}
\]

Observe that \(|B_k| \approx k^{(q/2)-1} \) and that, following a partition of each \(C_k \) into \(B_n \)'s, we have

\[
\left(\sum_{n \in C_k} |a_n|^2 \right)^{1/2} \leq \left(\sum_{n \in [4^{k+1}]} |s_n|^2 \right)^{1/2}.
\]

Therefore, since \((s_n^\infty)_{n=1} \) is a decreasing sequence, we have

\[
(2.5) \quad \left(\sum_{n \in C_k} |a_n|^2 \right)^{1/2} \leq K [2^{k/q}] s_{[4^{k+1}]}.
\]

And so, following (2.4) and (2.5), to obtain that \(\sum_{k=1}^{\infty} \|p_k\|_\infty \) is almost surely convergent and thus the theorem, we need to verify

\[
(2.6) \quad \sum_{k=1}^{\infty} [4^{k/q}] s_{[4^{k+1}]} k < \infty.
\]

Finally, observe that (2.6) is implied, via a change of index, by the assumption (2.3). \(\square \)

Corollary 2.4. The sample paths of every sub-\(\Lambda(q) \) process are almost surely continuous and of unbounded variation.

Proof. The stochastic series of \(X \) relative to the usual trigonometric system is given by

\[
(2.7) \quad X(t) - X(0) = \hat{X}(0)t + \sum_{n \neq 0} \hat{X}(n) \frac{e^{2\pi i nt}}{2\pi in} (e^{2\pi i nt} - 1).
\]

By Lemma 1.1, \(\{\hat{X}(n)\}_{n=-\infty}^{\infty} \) is a sub-\(\Lambda(q) \)-system. Therefore, since \(a_n = 1/n \) satisfies the hypothesis (2.3) in Theorem 2.3, we obtain that the stochastic series (2.7) represents almost surely a continuous function on \([0, 1]\).

Following a computation similar to the one in [3, Remark 3.8], we deduce that every sub-\(\Lambda(q) \) process is chaotic and, by [3, Proposition 3.9], that the sample paths of \(X \) are almost surely of unbounded variation. \(\square \)

3. The Littlewood Exponent of sub-\(\Lambda(q) \) Processes

Theorem 3.1. (i) Let \(X \) be a sub-\(\Lambda(q) \) process. Then

\[
1 \leq (q + 2)/(q + 1).
\]
(ii) For every \(q \geq 2 \), there exist \(\Lambda(q) \) processes \(X \) so that
\[
l_X = (q + 2)/(q + 1).
\]

In what follows below, we fix a sub-\(\Lambda(q) \) process \(X \), a measurable partition \(\{A_j\}_{j \in \mathbb{N}} \) of \(\Omega \), and a subdivision \(0 = t_0 < t_1 < \cdots < t_k < \cdots \leq 1 \). Denote
\[
a_{jk} = \mathbf{E} 1_{A_j}(X(t_k) - X(t_{k-1})), \quad j, k \in \mathbb{N}.
\]
Throughout, \(K \) will denote a numerical constant.

Lemma 3.2. For all \(p > q/(q - 1) \),
\[
\sum_j \left(\sum_k |a_{jk}| \right)^p \leq K
\]
where \(K > 0 \) depends only on \(p \) and \(\beta_X(q) \).

Proof. We verify (3.1) by duality. Fix \(p > q/(q - 1) \) and \((b_{jk}) \subset \mathbb{C} \) so that
\[
\sum_j \left(\sup_k |b_{jk}| \right)^{p'} = 1, \quad \frac{1}{p} + \frac{1}{p'} = 1.
\]
Following a rearrangement of the \(j \)'s, we can assume that
\[
\sup_k |b_{jk}|^{p'} \leq \frac{1}{j}, \quad j = 1, 2, \ldots.
\]
Write \(Y_k = (X(t_k) - X(t_{k-1}))/\sqrt{t_k - t_{k-1}} \), \(d_{jk} = b_{jk}/\sqrt{t_k - t_{k-1}} \), and obtain from (3.2),
\[
\left(\sum_k |d_{jk}|^2 \right)^{1/2} \leq 1/j^{1/p'}, \quad j = 1, 2, \ldots.
\]
Estimate
\[
\left| \sum_{j,k} a_{jk} b_{jk} \right| = \left| \sum_j \mathbf{E} 1_{A_j} \sum_k d_{jk} Y_k \right| \leq \mathbf{E} \sum_j 1_{A_j} \left| \sum_k d_{jk} Y_k \right|
\]
\[
\leq \sup_j \left| \sum_k d_{jk} Y_k \right| = \int_0^\infty \mathbf{P} \left(\bigcup_j \left\{ \sum_k d_{jk} Y_k > t \right\} \right) dt
\]
\[
\leq 1 + \int_1^\infty \sum_j \mathbf{P} \left(\left| \sum_k d_{jk} Y_k \right| > t \right) dt
\]
\[
\leq 1 + \left(\int_1^\infty t^{-q} dt \right) \beta_X(q) \sum_j 1/j^{q/p'} \equiv K < \infty
\]
(the last line above follows from (3.3) and the assumption \(\beta_X(q) < \infty \). \(\square \)
Lemma 3.3.

\[
\sum_j \left(\sum_k |a_{jk}|^2 \right)^{1/2} \leq K.
\]

Proof. (3.4) is a consequence of Littlewood's inequality for bounded bilinear forms [8]; this argument yields \(K \leq \sqrt{2} \) (= Khintchin's constant). We shall give a direct proof in our specific context, bypassing Littlewood's inequality and obtaining \(K = 1 \). We establish (3.4) by duality: suppose \((b_{jk}) \subseteq C\) satisfies

\[
\sup_j \left(\sum_k |b_{jk}|^2 \right)^{1/2} = 1,
\]

and estimate

\[
\left| \sum_{j,k} a_{jk} b_{jk} \right| = \left| \sum_{j,k} \mathbf{1}_{A_j} (X(t_k) - X(t_{k-1})) b_{jk} \right| = \left| \sum_k \mathbb{E} \left(\sum_j b_{jk} \mathbf{1}_{A_j} \right) (X(t_k) - X(t_{k-1})) \right|
\]

(without loss of generality, we assume that the sums above are performed over finitely many \(j\)'s and \(k\)'s)

\[
\leq \sum_k \left(\mathbb{E} \left| \sum_j b_{jk} \mathbf{1}_{A_j} \right| \right)^{1/2} \left(t_k - t_{k-1} \right)^{1/2} \quad \text{(by Schwarz's inequality)}
\]

\[
= \sum_k \left(\sum_j |b_{jk}|^2 \mathbb{P}(A_j) \right)^{1/2} \left(t_k - t_{k-1} \right)^{1/2}
\]

\[
\leq \left(\sum_k \sum_j |b_{jk}|^2 \mathbb{P}(A_j) \right)^{1/2} \left(\sum_k \left(t_k - t_{k-1} \right) \right)^{1/2}
\]

\[
= \left\| \sum_j \left(\sum_k |b_{jk}|^2 \right)^{1/2} \mathbf{1}_{A_j} \right\|_{L^2(\Omega, \mathbb{P})} \leq \left\| \sum_j \left(\sum_k |b_{jk}|^2 \right)^{1/2} \mathbf{1}_{A_j} \right\|_{L^\infty(\Omega, \mathbb{P})} = \sup_j \left(\sum_k |b_{jk}|^2 \right)^{1/2} = 1 \quad \text{(by (3.5))}. \quad \Box
\]
Proof of Theorem 3.1. (i) We need to show that \(\|X\|_p < \infty \) for all \(p = (b + 2)/(b + 1) > (q + 2)/(q + 1) \). To this end, we will verify
\[
\sum_{j, k} |a_{jk}|^{(b+2)/(b+1)} \leq \left(\sum_j \left(\sum_k |a_{jk}|^2 \right)^{1/2} \right)^{2/(b+1)} \cdot \left(\sum_j \left(\sum_k |a_{jk}|^{b/(b-1)} \right)^{(b-1)/(b+1)} \right),
\]
and then apply Lemmas 3.2 and 3.3. To establish (3.6), first write
\[
\sum_{j, k} |a_{jk}|^{(b+2)/(b+1)} = \sum_j \sum_k |a_{jk}|^{2/(b+1)} |a_{jk}|^{b/(b+1)},
\]
and apply Hölder’s inequality to \(\sum_k \) with exponents \(b + 1 \) and \((b + 1)/b\) to obtain
\[
\sum_{j, k} |a_{jk}|^{(b+2)/(b+1)} \leq \sum_j \left(\sum_k |a_{jk}|^2 \right)^{1/(b+1)} \left(\sum_k |a_{jk}|^{b/(b+1)} \right)^{b/(b+1)}.
\]
Now apply Hölder’s inequality to \(\sum_j \) above with exponents \((b + 1)/2\) and \((b + 1)/(b - 1)\), and deduce (3.6).

(ii) We consider the discrete abelian group \(\Gamma = \bigoplus Z_{k_j} \), where \((k_j) \) is a sequence of integers increasing to infinity, and view its dual group \(\hat{\Gamma} = \otimes Z_{k_j} = \Omega \) as a probability space with \(P = \text{Haar measure} \). Fix \(q > 2 \), and a set of characters \(E \subset \Gamma \) which is a \(\Lambda(q) \) system: such systems \(E \) were produced in [6] (in the terminology of [6], \(E \) is a \(\Lambda(q) \) set but not \(\Lambda(q + \varepsilon) \) for any \(\varepsilon > 0 \)). Such \(E \subset \bigoplus Z_{k_j} \), by the productions in [6], can be assumed to satisfy
\[
E = \bigcup_{j=1}^{\infty} E_j, \quad E_j \subset Z_{k_j}, \quad \text{(the coordinates of } E_j \text{ are nonzero only at the } k_j\text{th entry; this means that the } E_j\text{'s are mutually independent systems of random variables on } \Omega),
\]
\[
\sup_j \lambda_{E_j}(q) < \infty, \quad \sup_j \lambda_{E_j}(q + \varepsilon) = \infty, \quad \text{for all } \varepsilon > 0,
\]
and
\[
|E_j| \approx [k_j^{2/q}].
\]
Let \(U \) be a unitary map from \(L^2([0, 1], dt) \) into \(L^2_P(\Omega, P) \), and define
\[
X(t) = U1_{[0, t]}, \quad 0 \leq t \leq 1.
\]
By (3.7) and Lemma 2.3, \(X \) is a \(\Lambda(q) \) process and therefore, by part (iii), \(l_X \leq (q + 2)/(q + 1) \). By (3.8), following an estimation similar to the one in [4, Theorem 2, part (ii)], we obtain \(\|X\|_p = \infty \) for all \(p < (q + 2)/(q + 1) \), and therefore \(l_X = (q + 2)/(q + 1) \).
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CONNECTICUT 06268