Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ \Lambda(q)$ processes


Author: Ron C. Blei
Journal: Trans. Amer. Math. Soc. 319 (1990), 777-786
MSC: Primary 60G05; Secondary 60G17
DOI: https://doi.org/10.1090/S0002-9947-1990-0974517-3
MathSciNet review: 974517
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by some classical notions in harmonic analysis, $ \Lambda (q)$ processes are introduced in the context of a study of stochastic interdependencies. An extension of a classical theorem of Salem and Zygmund regarding random Fourier series is obtained. The Littlewood exponent of $ \Lambda (q)$ processes is estimated and, in some archetypical cases, computed.


References [Enhancements On Off] (What's this?)

  • [1] R. Blei, Multi-linear measure theory and multiple stochastic integration, Probability Theory and Related Fields 81 (1989), 569-584. MR 995812 (90f:60106)
  • [2] -, Combinatorial dimension and certain norms in harmonic analysis, Amer J. Math. 106 (1984), 847-887. MR 749259 (86a:43009)
  • [3] -, $ \alpha $-chaos, J. Functional Anal. 81 (1988), 279-297. MR 971881 (90m:60090)
  • [4] R. Blei and J.-P. Kahane, A computation of the Littlewood exponent of stochastic processes, Math. Proc. Cambridge Philos. Soc. 103 (1988), 367-370. MR 923689 (89a:60138)
  • [5] -, Measurements of interdependencies of stochastic increments, Proceedings of 1987 Summer Conference on Harmonic Analysis, Contemp. Math., vol. 91, Amer. Math. Soc., Providence, R. I., 1989, pp. 29-36. MR 1002585
  • [6] J. Bourgain, Bounded orthogonal systems and the $ \Lambda (p)$-set problem, Acta Math. 162 (1989), 227-245. MR 989397 (90h:43008)
  • [7] Y. Katznelson, An introduction to harmonic analysis, Dover, New York, 1976. MR 0422992 (54:10976)
  • [8] J. E. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart. J. Math Oxford 1 (1930), 164-174.
  • [9] H. P. McKean, Geometry of differential space, Ann. Probab. 1 (1973), 197-206. MR 0353471 (50:5954)
  • [10] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227. MR 0116177 (22:6972)
  • [11] R. Salem and A. Zygmund, Some properties of trigonometric series whose terms have random signs, Acta Math. 91 (1954), 245-301. MR 0065679 (16:467b)
  • [12] N. Wiener, The homogeneous chaos, Amer. J. Math. 60 (1938), 897-936. MR 1507356

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60G05, 60G17

Retrieve articles in all journals with MSC: 60G05, 60G17


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0974517-3
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society