WEIGHTED INEQUALITIES FOR ONE-SIDED MAXIMAL FUNCTIONS

F. J. MARTÍN-REYES, P. ORTEGA SALVADOR, AND A. DE LA TORRE

ABSTRACT. Let M^+_g be the maximal operator defined by

$$M^+_g f(x) = \sup_{h>0} \left(\int_x^{x+h} |f(t)| g(t) \, dt \right) \left(\int_x^{x+h} g(t) \, dt \right)^{-1},$$

where g is a positive locally integrable function on \mathbb{R}. We characterize the pairs of nonnegative functions (u, v) for which M^+_g applies $L^p(v)$ in $L^p(u)$ or in weak-$L^p(u)$. Our results generalize Sawyer's (case $g = 1$) but our proofs are different and we do not use Hardy's inequalities, which makes the proofs of the inequalities self-contained.

1. INTRODUCTION

In this paper we will study the operator M^+_g acting on measurable real functions on \mathbb{R} defined by

$$M^+_g f(x) = \sup_{h>0} \left(\int_x^{x+h} |f(t)| g(t) \, dt \right) \left(\int_x^{x+h} g(t) \, dt \right)^{-1},$$

where g is a locally integrable and positive function. If $g = 1$ we obtain the one-sided Hardy-Littlewood maximal operator which has been studied by Sawyer [7].

We will characterize the pairs of weights (u, v) such that M^+_g is of weak and strong type (p, p) with respect to the measures $v dx$ and $u dx$. Our results include Sawyer's as particular cases, but with different proofs. The proof of the theorem about the weak type (p, p) ($p > 1$) is adapted from [1]. On the other hand, the proof of the theorem about the strong type (p, p) is simpler than the corresponding one in [7] (our proof follows the pattern of the proof in [6]) and besides we do not use Hardy's inequalities which makes the proofs of the inequalities self-contained. We also include the weak type $(1,1)$ that is not
studied in [7]. Finally we give several results about the good weights for M^+_g such as relations with Muckenhoupt's classes, factorization, and extrapolation.

2. Notation and main results

Throughout this paper, g will be a positive locally integrable function and C a positive constant not necessarily the same at each occurrence. If $p > 1$, then its conjugate exponent will be denoted by p', and for a Lebesgue measurable set A, χ_A will be its characteristic function and $|A|$ its measure.

We will say that a pair of nonnegative functions (u, v) satisfies condition $A^+_p(g)$, $p > 1$, if there exists a constant $C > 0$ such that for every y, x, b with $y \leq x \leq b$,

\[\int_y^x u \left(\int_x^b g^p \sigma \right)^{p-1} \leq C \left(\int_y^b g \right)^p, \]

where $\sigma = v^{-1/p-1}$ (as usual, we consider $0 \cdot \infty = 0$).

Condition $A^+_1(g)$ is given by

\[M_v^{-1}(g^{-1} u) \leq C g^{-1} v \quad \text{a.e.}, \]

where M_v^{-1} is the left maximal operator defined in the obvious way.

A pair of nonnegative functions (u, v) satisfies condition $S^+_p(g)$, $p > 1$, if there exists a constant $C > 0$ such that for every interval $I = (a, b)$ with $\int_{(-\infty, a)} u > 0$,

\[\int_a^b (M_g^+(\chi_I g^{1/p-1} \sigma))^{p} u \leq C \int_a^b g^p \sigma < \infty. \]

Our main results are the following three theorems.

Theorem 1. M^+_g is of weak type (p, p), $p > 1$, with respect to the measures $v \, dx$ and $u \, dx$ if and only if (u, v) satisfies $A^+_p(g)$.

Theorem 2. M^+_g is of strong type (p, p), $p \geq 1$, from $L^p(v)$ to $L^p(u)$ if and only if (u, v) satisfies $S^+_p(g)$.

Theorem 3. If $u = v$ and $p > 1$, $A^+_p(g)$ and $S^+_p(g)$ are equivalent conditions, that is, the weak type (p, p) is equivalent to the strong type (p, p).

3. Proof of Theorem 1 for $p = 1$

We will need two lemmas:

Lemma 1. Let w be a positive increasing function defined on $I = [a, b]$ (i.e., $s \leq t$ implies $w(s) \leq w(t)$). Let f be a positive function on I. Suppose for some positive number λ

\[\int_t^b g f \geq \lambda \int_t^b g \quad \text{for every } t \in I. \]

Then $\lambda \int_a^b g f w \leq \int_a^b g f w$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof of Lemma 1. Let $B > 1$. Let
\[E = \left\{ t \in [a, b] : \lambda \int_a^b g w \leq \lambda \int_a^t g w + B w(t) \left[\lambda \int_t^b g - \int_t^b f g \right] + B \int_t^b f g w \right\}. \]
Let $\tau = \inf E$ (E is nonempty). We claim that $\tau = a$. If $a < \tau$, let $n \in (a, \tau)$ such that $B w(n) > \text{ess sup}\{w(t) : a < t \leq \tau\}$. We will prove that $n \in E$, which will contradict that $\tau = \inf E$. Since $\tau \in E$ we have
\[\lambda \int_a^b g w \leq \lambda \int_a^\tau g w + B w(\tau) \left[\lambda \int_\tau^b g - \int_\tau^b f g \right] + B \int_\tau^b f g w. \]
Now, the fact that w is increasing, the assumptions of the lemma and $n < \tau$ give
\[\lambda \int_a^b g w \leq \lambda \int_a^\eta g w + \lambda \int_\eta^\tau g w + B w(\eta) \left[\lambda \int_\tau^b g - \int_\tau^b f g \right] + B \int_\eta^\tau f g w. \]
If we use again that w is increasing and the election of η, we obtain
\[\lambda \int_a^b g w \leq \lambda \int_a^\eta g w + B w(\eta) \left[\lambda \int_\eta^b g - \int_\eta^b f g \right] + B \int_\eta^\tau f g w. \]
This means that $\eta \in E$, a contradiction. Hence, $\tau = a$ and then $a \in E$, that is
\[\lambda \int_a^b g w \leq B w(a) \left[\lambda \int_a^b g - \int_a^b f g \right] + B \int_a^b f g w. \]
Since the expression in brackets is nonpositive, we obtain $\lambda \int_a^b g w \leq B \int_a^b f g w$. Letting B tend to 1, we have the result.

Lemma 2. If (u, v) satisfies $A_1^+(g)$ and $[a, b]$ is an interval, then there exists an increasing function w on $[a, b]$ such that
(i) $w(s) \leq C g^{-1}(s)v(s)$ a.e. $s \in [a, b]$.
(ii) $\int_a^b u \leq \int_a^b g w$.

Proof of Lemma 2. Let $G(y) = M_g^-(g^{-1}u\chi_{[a, b]})(y)$. The function G is lower semicontinuous and finite a.e. by $A_1^+(g)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Let $w(x) = \min_{x \leq y \leq b} G(y)$. It is obvious that w is increasing and verifies (i). To see (ii), let $0 < B < 1$ and

$$A = \left\{ t \in [a, b]: \int_y^b g w \geq B \int_y^b u \text{ for every } y \in [t, b] \right\}.$$

It is clear that A is a closed interval $[\tau, b]$. We will prove that $\tau = a$.

Suppose $\tau > a$. Since G is lower semicontinuous, there exists $\delta > 0$ such that $G(x) \geq BG(\tau)$ if $x \in [\tau - \delta, \tau)$. For such an x,

$$w(x) = \min_{x \leq y \leq b} G(y) = \min \left\{ \min_{x \leq y \leq \tau} G(y), \ min_{\tau \leq y \leq b} G(y) \right\} \geq \min\{BG(\tau), w(\tau)\} \geq Bw(\tau).$$

By the definition of w, there exists γ with $\tau \leq \gamma \leq b$ such that $w(\tau) = G(\gamma)$. For every $x \in [\tau, \gamma]$, $w(x) = w(\tau) = G(\gamma)$, and for every $x \in [\tau - \delta, \tau)$, $w(x) \geq Bw(\tau) = BG(\gamma)$. Therefore, if $x \in [\tau - \delta, \gamma]$ then $w(x) \geq BG(\gamma)$. Hence

$$\int_x^\gamma g w \geq BG(\gamma) \int_x^\gamma g \geq B \int_x^\gamma u \text{ for every } x \in [\tau - \delta, \gamma].$$

This means that $\tau - \delta \in A$, which contradicts that τ is the infimum of A. Therefore $\tau = a$ and then $\int_a^b g w \geq B \int_a^b u$. Letting B tend to 1 the proof is finished.

Now, it is easy to prove that $A^+(g)$ is sufficient for the weak $(1,1)$ inequality. Let f be a positive function with support bounded from above, and let $\lambda, N > 0$. Let $O_{\lambda, N} = (-N, \infty) \cap \{x: M^+g(x) > \lambda\}$. $O_{\lambda, N}$ is a bounded open set and therefore there exists a sequence of maximal pairwise disjoint finite intervals $\{(a_j, b_j)\}$ such that $O_{\lambda, N} = \bigcup (a_j, b_j)$ and $\int_{a_j}^{b_j} f g \geq \lambda \int_{a_j}^{b_j} g$ for every $x \in (a_j, b_j)$. For each j, by Lemma 2, there exists an increasing function w_j on $[a_j, b_j]$ such that

$$w_j(t) \leq C g^{-1}(t)v(t) \text{ a.e. } t \in [a_j, b_j]$$

and

$$\int_{a_j}^{b_j} u \leq \int_{a_j}^{b_j} g w_j.$$

If we apply Lemma 1 to each w_j, we obtain

$$\lambda \int_{a_j}^{b_j} g w_j \leq \int_{a_j}^{b_j} g f w_j.$$

Now (3.2), (3.3), and (3.1) give

$$\int_{O_{\lambda, N}} u = \sum_j \int_{a_j}^{b_j} u \leq \sum_j \int_{a_j}^{b_j} g w_j \leq \lambda^{-1} \sum_j \int_{a_j}^{b_j} g f w_j \leq C \lambda^{-1} \int_{O_{\lambda, N}} f v = C \lambda^{-1} \int_{O_{\lambda, N}} f v.$$
Letting N tend to infinity we obtain $\int_{\{x : M^+_g f(x) > \lambda\}} u \leq C \lambda^{-1} \int_{-\infty}^{+\infty} f v$.

Conversely, let us suppose that M^+_g is of weak type $(1,1)$ with respect to the measures $v dx$ and $u dx$. For every natural number N we consider the set $E_N = \{ x : g^{-1}(x)v(x) \leq N \}$ and the function $v_N = v \chi_{E_N}$. Let F_N and H_N be the Lebesgue sets of $g^{-1}v_N$ and χ_{E_N} respectively. It is clear that if $F = \bigcap_N F_N \cap H_N$ then $|R - F| = 0$. Let x be in F, and let $\delta, \varepsilon > 0$ such that $\int_{x-\delta}^x g \leq 2 \int_{x-\delta}^x g$. Now consider N with $g^{-1}(x)v(x) \leq N$. If $f_N = g^{-1} \chi_{E_N \cap (x, x+\varepsilon)}$ and $y \in (x-\delta, x)$ then

$$M_g f_N(y) \geq \int_{x}^{x+\varepsilon} \chi_{E_N} \left(2 \int_{x-\delta}^x g \right)^{-1}.$$

Therefore, by the weak type inequality,

$$\int_{x-\delta}^x u \leq 2C \left(\int_{x-\delta}^x g \right) \left(\int_{x}^{x+\varepsilon} g^{-1}v_N \right) \left(\int_{x}^{x+\varepsilon} \chi_{E_N} \right)^{-1}.$$

If we let ε tend to zero and then N to infinity we get

$$\int_{x-\delta}^x u \leq 2C \left(\int_{x-\delta}^x g \right) (g^{-1}v)(x).$$

Since δ is an arbitrary positive number we obtain $M_g^{-1}u(x) \leq 2C(g^{-1}v)(x)$ for all x in F and thus for almost every x in R.

4. Proof of Theorem 1 for $p > 1$

Suppose that (u, v) satisfies $A^+_p(g)$ and $\int_{(-\infty, b)} g = \infty$ for every b in R. Then if $y \leq x \leq b$

$$(4.1) \quad \left(\int_y^x u \right) \left(\int_x^b g^{p-1} \sigma \right)^{p-1} \leq C \left(\int_y^b g \right)^p,$$

with C independent of x, y, and b. Let $\alpha > 0$. Multiplying both sides of (4.1) by $g(y)(\int_y^b g)^{-p-\alpha-1}$ and integrating with respect to y on $(-\infty, x)$ we get

$$(4.2) \quad \left(\int_x^b g^{p-1} \sigma \right)^{p-1} \int_{-\infty}^x g(y) \left(\int_y^x u \right) \left(\int_y^b g \right)^{-p-\alpha-1} dy$$

for every x. Computing the right-hand side of (4.2), we obtain

$$(4.3) \quad \left(\int_x^b g^{p-1} \sigma \right)^{p-1} \int_{-\infty}^x g(y) \left(\int_y^x u \right) \left(\int_y^b g \right)^{-p-\alpha-1} dy \leq C \alpha^{-1} \left(\int_x^b g \right)^{-\alpha}.$$
Besides

\[\int_{-\infty}^{x} g(y) \left(\int_{-\infty}^{y} u(t) \, dt \right) \left(\int_{t}^{b} g \right)^{-p-a-1} \, dy \]

(4.4)

\[= \int_{-\infty}^{x} u(t) \left(\int_{-\infty}^{t} g(y) \left(\int_{y}^{b} g \right)^{-p-a-1} \, dy \right) \, dt \]

\[= \int_{-\infty}^{x} u(t)(p+\alpha)^{-1} \left(\int_{t}^{b} g \right)^{-p-\alpha} \, dt. \]

(4.3) and (4.4) give

\[\left(\int_{x}^{b} g^{p} \sigma \right)^{p-1} \int_{-\infty}^{x} u(t) \left(\int_{t}^{b} g \right)^{-p-\alpha} \, dt \leq C(p+\alpha)\alpha^{-1} \left(\int_{x}^{b} g \right)^{-\alpha}. \]

(4.5)

It is interesting to note that (4.5) holds even if \(g^{p} \sigma \) is not locally integrable, since \(A_{p}^{+}(g) \) implies that if the integral of \(g^{p} \sigma \) on \([x_1, x_2]\) is infinite then \(u(t) = 0 \) for a.e. \(t < x_1 \).

Let \(f \) be a positive function with support bounded from above. For \(\lambda > 0 \) and natural \(N \), let \(O_{\lambda, N} = \{x: M_{f}(x) > \lambda\} \cap (-N, \infty) \). Let \((a, b) \) be a connected component of \(O_{\lambda} \). We have

\[\int_{x}^{b} g < \int_{x}^{b} f g \quad \text{for every } x \text{ in } (a, b). \]

(4.6)

Let \(A = \{x \in [a, b]: \int_{x}^{b} g^{p} \sigma = \infty\} \). If \(A \neq \emptyset \), let \(x_0 = \sup A \); if \(A = \emptyset \), let \(x_0 = a \). Then \(\int_{x}^{b} g^{p} \sigma < \infty \) for every \(x > x_0 \) and it follows from \(A_{p}^{+}(g) \) that \(u(x) = 0 \) a.e. in \([a, x_0]\). Thus \(\int_{a}^{b} u = \int_{x_0}^{b} u \).

Let \(H \) and \(h \) be the functions defined on \((a, b)\) by

\[H(x) = \int_{a}^{x} u(t) \left(\int_{t}^{b} g \right)^{-p-\alpha} \, dt \quad \text{and} \quad h(x) = \left(\int_{x}^{b} g^{p} \sigma \right)^{1/p'}. \]

(4.7)

It is clear that \(H(x) = 0 \) and \(h(x) = \infty \) if \(x < x_0 \) and from (4.5) we get

\[(h(x))^{p} H(x) \leq C(p+\alpha)\alpha^{-1} \left(\int_{x}^{b} g \right)^{-\alpha} \quad \text{for every } x \in [a, b]. \]

On the other hand we have

\[\int_{a}^{b} u(x) \, dx = \int_{x_0}^{b} H'(x) \left(\int_{x}^{b} g \right)^{p+\alpha} \, dx. \]

(4.8)
Integration by parts in the right-hand side of (4.8) gives

\[\int_{a}^{b} u(x) \, dx = (p + \alpha) \int_{x_0}^{b} H(x)g(x) \left(\int_{x}^{b} g \right)^{p + \alpha - 1} \, dx \]

(4.9) \[\leq C(p + \alpha)^2 \alpha^{-1} \int_{x_0}^{b} h^{-p}(x)g(x) \left(\int_{x}^{b} g \right)^{p - 1} \, dx, \]

by (4.7). Again integration by part gives

\[\int_{a}^{b} u \leq C(p + \alpha)^2 \alpha^{-1} \left(\int_{x_0}^{b} h^{-p}(x_0) \left(\int_{x_0}^{b} g \right)^{p} \right)^{p - 1} \int_{x_0}^{b} h(x)h^{-p} \left(\int_{x}^{b} g \right)^{p} \, dx. \]

(4.10) On the other hand, if we raise both sides of (4.6) to the \(p \)th power and apply Hölder's inequality with exponents \(p \) and \(p' \), after introducing suitable factors, we obtain

\[\lambda^{p} \leq \left(\int_{x}^{b} g \right)^{-p} \left(\int_{x}^{b} g f \right)^{p} \]

(4.11) \[\leq \left(\int_{x}^{b} g \right)^{-p} \left(\int_{x}^{b} f^{p} h v \right) \left(\int_{x}^{b} g^{p'} \sigma h^{-p'/p} \right)^{p/p'}. \]

Computing the last integral of the above inequality gives us

\[\int_{x}^{b} g^{p'} \sigma h^{-p'/p} = \int_{x}^{b} g^{p'}(t)\sigma(t) \left(\int_{t}^{b} g^{p'} \sigma \right)^{-1/p} \, dt \]

(4.12) \[= p' \left(\int_{x}^{b} g^{p'} \sigma \right)^{1/p'} = p' h(x). \]

Then (4.11) becomes

\[\left(\int_{x}^{b} g \right)^{p} \leq \lambda^{-p} p^{p-1} \left(\int_{x}^{b} f^{p} h v \right) h^{-1}(x). \]

(4.13) If we set \(x = x_0 \) in (4.13), we obtain an inequality that allows us to majorize the first addend of the right-hand side in (4.10), i.e.,

\[h^{-p}(x_0) \left(\int_{x_0}^{b} g \right)^{p} \leq \lambda^{-p} p^{p-1} \left(\int_{x_0}^{b} f^{p} h v \right) h^{-1}(x_0). \]

(4.14) To majorize the second addend we will use (4.13), the positivity of \(-h' \), and
integration by parts:

\[- \int_{x_0}^{b} h^{-p-1}(x) h'(x) \left(\int_{x}^{b} g \right)^{p} \, dx\]

(4.15)

\[\leq -\lambda^{-p} p^{p-1} \int_{x_0}^{b} h^{-2}(x) h'(x) \left(\int_{x}^{b} f^{p} h \right) \, dx\]

\[= \lambda^{-p} p^{p-1} \left(-h^{-1}(x_{0}) \int_{x_{0}}^{b} f^{p} h + \int_{x_0}^{b} f^{p} v \right).\]

Finally, (4.14), (4.15), and (4.10) give

(4.16) \[\int_{a}^{b} u \leq C \lambda^{-p} (p + \alpha)^{2} p^{p-1} \alpha^{-1} \int_{x_0}^{b} f^{p} v \leq C \lambda^{-p} (p + \alpha)^{2} p^{p-1} \alpha^{-1} \int_{a}^{b} f^{p} v.\]

We have proved that

\[\int \int_{O_{x,N}} u \leq C \lambda^{-p} \int \int_{O_{x,N}} f^{p} v.\]

Letting N tend to infinity we obtain the weak inequality.

Everything we have just done is based on the assumption \(\int_{(-\infty, b)} g = \infty \) for every b. If it is not true we define \(g_{n} = g \) if \(x \geq -n \) and \(g_{n} = \max\{g, 1\} \) if \(x < -n \), for every natural n. Every \(g_{n} \) verifies \(\int_{\infty}^{b} g_{n} = \infty \) for every b, and since \((u, v) \in A_{p}^{+}(g) \) we have that \((u, g^{-p} g_{n}^{p} v) \) satisfies \(A_{p}^{+}(g_{n}) \). Then, by what we have already shown

(4.17) \[\int_{\{x : M_{f_{n}}^{+} f(x) > \lambda\}} u \leq C \lambda^{-p} \int_{-\infty}^{+\infty} |f|^{p} g_{n}^{p} g^{-p} v\]

for every f, where C depends only on the constant of the \(A_{p}^{+}(g) \) condition. Now if we apply (4.17) to the functions \(f_{x,-\infty} \) we have

\[\int_{\{x \geq -n : M_{f_{n}}^{+} f(x) > \lambda\}} u \leq C \lambda^{-p} \int_{-n}^{+\infty} |f|^{p} v.\]

Letting n tend to infinity we obtain the weak type inequality.

Conversely, suppose that \(M_{g}^{+} \) is of weak type \((p, p)\) with respect to the measures \(vd x \) and \(ud x \). Let \(x, y, b \) be given with \(x \leq y \leq b \). For every natural n, let \(h_{n} = g^{p} \sigma \chi_{\{x : g^{p} \sigma(x) < n\}} \). \(\{h_{n}\} \) is an increasing sequence with limit \(g^{p} \sigma \). Let \(f = \chi_{(y,b)}(g^{-1}v)^{-1/p-1} \chi_{\{x : g^{p} \sigma < n\}} \) and \(B_{n} = \int_{y}^{b} h_{n}(f_{x} g)^{-1} \). If \(z \in [x, y] \) we have \(M_{g}^{+} f(z) \geq B_{n} \). Then, the weak type inequality gives

\[\int_{x}^{y} u \leq C B_{n}^{-p} \int_{y}^{b} h_{n},\]

or equivalently

\[\left(\int_{x}^{y} u \right) \left(\int_{y}^{b} h_{n} \right)^{p-1} \leq C \left(\int_{x}^{b} g \right)^{p}.\]
Now the $A_{p}^{+}(g)$ condition follows from the monotone convergence theorem.

5. PROOF OF THEOREM 2

The necessity of $S_{p}^{+}(g)$ for the two-norm inequality is trivial. For the converse it will suffice to prove the strong type inequality for bounded positive f in $L^{p}(v)$ with support bounded from above.

Let N be a positive integer. For $k > 0$ let

$$O_{k} = \{ x \in \mathbb{R} : M_{g}^{+} f(x) > 2^{k} \} \cap (-N, +\infty).$$

Each O_{k} is an open set and, therefore, there exists a sequence $\{ I_{jk} \}_{j}$ of open pairwise disjoint intervals with $O_{k} = \bigcup_{j} I_{jk}$ and such that

$$\int_{x}^{b_{jk}} g f \geq 2^{k} \int_{x}^{b_{jk}} g \quad \text{for every } x \in I_{jk} = (a_{jk}, b_{jk}).$$

(5.1)

It is clear that $\sup_{j,k} |I_{jk}| < \infty$. For every j and k let $A_{jk} = \{ x \in I_{jk} : \int_{x}^{b_{jk}} g^{p'} \sigma = \infty \}$. If $A_{jk} \neq \emptyset$, let $x_{jk} = \sup A_{jk}$; if $A_{jk} = \emptyset$, let $x_{jk} = a_{jk}$.

It is clear that $\int_{x}^{b_{jk}} g^{p'} \sigma < \infty$ if $x > x_{jk}$ and $u = 0$ a.e. x in (a_{jk}, x_{jk}) by $S_{p}^{+}(g)$. For every j and k let

$$E_{jk} = I_{jk} \cap \{ x : M_{g}^{+} f(x) \leq 2^{k+1} \} \quad \text{and} \quad F_{jk} = (x_{jk}, b_{jk}) \cap E_{jk}.$$

The sets E_{jk} are pairwise disjoint and for every k

$$\bigcup_{j} E_{jk} = \{ x : 2^{k} < M_{g}^{+} f(x) \leq 2^{k+1} \} \cap (-N, \infty).$$

(5.2)

Then

$$\int_{-N}^{+\infty} (M_{g}^{+} f)^{p} u = \sum_{k,j} \int_{(-N, +\infty) \cap \{ x : 2^{k} < M_{g}^{+} f(x) \leq 2^{k+1} \}} (M_{g}^{+} f)^{p} u$$

$$= \sum_{k,j} \int_{E_{jk}} (M_{g}^{+} f)^{p} u = \sum_{k,j} \int_{F_{jk}} (M_{g}^{+} f)^{p} u.$$

By the definition of F_{jk} and by (5.1) we have that the last term is smaller than or equal to

$$2^{p} \sum_{k,j} \int_{F_{jk}} u(x) \left(\int_{x}^{b_{jk}} f g \right)^{p} \left(\int_{x}^{b_{jk}} g \right)^{-p} dx.$$

Therefore

$$\int_{-N}^{+\infty} (M_{g}^{+} f)^{p} u \leq 2^{p} \sum_{k,j} \int_{F_{jk}} u(x) \left(\int_{x}^{b_{jk}} f g \right)^{p} \left(\int_{x}^{b_{jk}} g^{p'} \sigma \right)^{-p}$$

$$\times \left(\int_{x}^{b_{jk}} g^{p'} \sigma \right)^{p} \left(\int_{x}^{b_{jk}} g \right)^{-p} dx.$$

(5.3)
Let $X = \mathbb{Z} \times \mathbb{Z} \times \mathbb{R}$ and let ω be the product measure $\nu \times \nu \times m$ where ν is the counting measure on \mathbb{Z} and m is the Lebesgue measure on \mathbb{R}. Let φ be the real function defined on X by

$$
\varphi(j, k, x) = \chi_{F_{jk}}(x)u(x) \left(\int_X g^{p'}\sigma \right)^p \left(\int_X g \right)^{-p}
$$

and let T be the linear operator

$$
T_h(j, k, x) = \int_X h g^{p'}\sigma \left(\int_X g \right)^{-1}.
$$

With these notations inequality (5.3) can be written in the following way:

$$
\int_{-\infty}^{+\infty} (M^+_g f)^p u \leq 2^p \int_X [T(f(g^{-1}v)^{1/p-1})]^p \varphi d\omega.
$$

If we prove that the operator T is bounded from $L^p(g^{p'}\sigma \, dx)$ to $L^p(X, \varphi d\omega)$, we will get

$$
\int_{-\infty}^{+\infty} (M^+_g f)^p u \leq C 2^p \int_{-\infty}^{+\infty} (f(g^{-1}v)^{1/p-1})^p g^{p'} \sigma = C 2^p \int_{-\infty}^{+\infty} f^p v,
$$

and, letting N tend to infinity, the proof will be finished.

To prove the boundedness of T we observe that it is obviously bounded in L^∞ and by Marcinkiewicz's interpolation theorem it will be enough to prove the weak type $(1,1)$, i.e., $\int \{ (j, k, x) \in X : Th(j, k, x) > \lambda \} \varphi d\omega \leq C \lambda^{-1} \int f^p g^{p'} \sigma$ with C the constant of condition (2.3).

Let $A_{jk}(\lambda) = F_{jk} \cap \{ x : Th(j, k, x) > \lambda \}$. The sets A_{jk} are pairwise disjoint. For each pair j, k, let $s_{jk}(\lambda) = \inf A_{jk}(\lambda)$ and $J_{jk} = J_{jk}(\lambda) = [s_{jk}(\lambda), b_{jk})$. If we pick up two of these intervals J_{jk} and J_{lm}, then they are either disjoint or one of them is contained in the other. Also it is clear that each J_{jk} verifies

$$
\int_{J_{jk}} h g^{p'} \sigma \geq \lambda \int_{J_{jk}} g^{p'} \sigma.
$$

Let $\{J_i\}$ be the maximal elements of the family $\{J_{jk}\}$. These maximal elements exist since the intervals J_{jk} have uniformly bounded lengths. Also the
intervals J_i verify (5.5). Then

$$\int_{\{j,k,x\} : \text{Th}(j,k,x) > \lambda} \varphi(j,k,x) \, d\omega$$

$$= \sum_{k,j} \sum_{A_{jk}(\lambda)} u(x) \left(\int_x^{b_{jk}} g^p \sigma \left(\int_x^{b_{jk}} g \right)^{-p} \, dx \right)$$

$$\leq \sum_{i} \sum_{\{i,j\} : J_i \supset J_{jk}} \int_{A_{jk}(\lambda)} u(x) \left(\int_x^{b_{jk}} g^p \sigma \left(\int_x^{b_{jk}} g \right)^{-p} \, dx \right)$$

$$\leq \sum_{i} \int_{J_i} (M_g^+(\chi_{J_i} g^{1/p-1} \sigma))(x))^p u(x) \, dx$$

$$\leq C \sum_{i} \int_{J_i} g^p(x) \sigma(x) \, dx \quad \text{by (2.3)},$$

and by (5.5) the last term is smaller than or equal to

$$C \lambda^{-1} \sum_{i} \int_{J_i} h(x) g^p(x) \sigma(x) \, dx \leq C \lambda^{-1} \int_{-\infty}^{\infty} h(x) g^p(x) \sigma(x) \, dx.$$

This proves the weak $(1,1)$ inequality for T and hence the proof of Theorem 2 is finished.

6. PROOF OF THEOREM 3

Suppose that $u \in A_p^+(g)$. Let $I = (a, b)$ be an interval such that $\int_a^b u > 0$. This implies that $\int_a^b g^p \sigma < \infty$ where $\sigma = u^{-1/p-1}$. Let $x \in I$ then there exist $h > 0$ with $x + h \in I$ such that

$$(6.1) \quad \frac{3}{4} M_g^+(\chi_I g^{1/p-1} \sigma)(x) \leq \int_x^{x+h} g^p \sigma \left(\int_x^{x+h} g \right)^{-1}.$$

For this h there exists t with $0 < t < h$ such that $\int_x^{x+t} g = \int_x^{x+h} g$. This t verifies

$$(6.2) \quad \int_x^{x+t} g^p \sigma \left(\int_x^{x+t} g \right)^{-1} \leq M_g^+(\chi_I g^{1/p-1} \sigma)(x).$$

(6.1) and (6.2) give

$$(6.3) \quad M_g^+(\chi_I g^{1/p-1} \sigma)(x) \leq 4 \int_{x+t}^{x+h} g^p \sigma \left(\int_x^{x+h} g \right)^{-1}.$$

On the other hand, condition $A_p^+(g)$ for u gives

$$(6.4) \quad \int_{x+t}^{x+h} g^p \sigma \left(\int_x^{x+h} g \right)^{-1} \leq C \left(\int_x^{x+h} g \right)^{p'-1} \left(\int_x^{x+t} u \right)^{1-p'}.$$
Now (6.3) together with (6.4) gives

\[M^+_g(\chi^+_l g^{1/p-1} \sigma)(x) \leq C \left(\int_x^{x+h} g \right)^{p'-1} \left(\int_x^{x+t} u \right)^{1-p'} \]
\[\leq C(M^+_u(\chi^+_l g u^{-1})(x))^{p'-1}. \]

Raising to p and multiplying by $u(x)$, we get

\[(M^+_g(\chi^+_l g^{1/p-1} \sigma)(x))^p u(x) \leq C(M^+_u(\chi^+_l g u^{-1})(x))^{p'} u(x). \]

But M^+_u is bounded in $L^p(u)$, because $u \in A^+_r(u)$ for every $r > 1$. Then

\[\int_I (M^+_g(\chi^+_l g^{1/p-1} \sigma)(x))^p u(x) \, dx \leq C \int_I g^{p'} \sigma. \]

Therefore u satisfies $S^+_p(g)$.

The fact that $S^+_p(g)$ implies $A^+_p(g)$ is a consequence of Theorems 1 and 2, not only for a weight, but for pairs of weights. However, we are going to give a direct proof. Suppose that the pair (u, v) satisfies $S^+_p(g)$. Let a, b, and c be real numbers with $a \leq b \leq c$. If the integral of $g^{p'} \sigma$ over $[b, c]$ is equal to infinity, then, by $S^+_p(g)$, $u(x) = 0$ a.e. x in $[a, b]$ and the inequality

\[\int_a^b u \left(\int_b^c g^{p'} \sigma \right)^{p-1} \leq C \left(\int_a^c g \right)^p \]

is trivially satisfied.

Now suppose that the integral of $g^{p'} \sigma$ over $[b, c]$ is finite. We define a possibly finite decreasing sequence by $x_0 = b$ and x_{k+1} the real number such that

\[2^{k+1} \int_b^{x_{k+1}} g^{p'} \sigma = \int_{x_{k+1}}^c g^{p'} \sigma \]

if

\[\int_{-\infty}^{x_k} g^{p'} \sigma \geq 2^k \int_b^c g^{p'} \sigma \]

otherwise the sequence finishes in x_k.

Suppose first that the sequence is finite and x_r is its last term. If $r = 0$, then

\[\int_a^b u(x) \left(\int_x^c g \right)^{-p} \left(\int_b^c g^{p'} \sigma \right)^p \, dx \leq \int_a^b u(x)(M^+_g(\chi^+_l g^{1/p-1} \sigma)(x))^p \, dx \]
\[\leq C \int_a^c g^{p'} \sigma \leq 2C \int_b^c g^{p'} \sigma. \]

This implies trivially $A^+_p(g)$.
If $r > 0$, let $a' < x$, and $a' < a$. Then,

$$
\int_a^b u(x) \left(\int_x^c g \right)^{-p} \left(\int_b^c g^{p'} \sigma \right)^p dx
\leq 2^{-rp} \int_a^{x'} u(x) \left(\int_x^c g \right)^{-p} \left(\int_x^c g^{p'} \sigma \right)^p dx
+ \sum_{k=0}^{r-1} 2^{-kp} \int_{x_k}^{x_{k+1}} u(x) \left(\int_x^c g \right)^{-p} \left(\int_x^c g^{p'} \sigma \right)^p dx
\leq 2^{-rp} \int_a^{x'} u(x)(M^+(x',c)g^{1/p-1}\sigma)(x))^p dx
+ \sum_{k=0}^{r-1} 2^{-kp} \int_{x_k}^{x_{k+1}} (M^+(x_{k+1},c)g^{1/p-1}\sigma)(x))^p u(x) dx
\leq C \left(\sum_{k=0}^r 2^{-kp+k+1} \right) \int_b^c g^{p'} \sigma \leq C \int_b^c g^{p'} \sigma.
$$

Finally, suppose that the sequence is infinite and let $d = \lim x_k$. If d is finite, then $u = 0$ a.e. in $(-\infty, d)$ by $S_p^+(g)$. So, whether d is finite or not we have

$$
\int_a^b u(x) \left(\int_x^c g \right)^{-p} \left(\int_b^c g^{p'} \sigma \right)^p dx \leq \int_d^b u(x) \left(\int_x^c g \right)^{-p} \left(\int_b^c g^{p'} \sigma \right)^p dx.
$$

Using the reasoning above with sum from 0 to ∞ completes the proof.

7. Further results

(A) Relations with Muckenhoupt's $A_p(g)$ classes and Sawyer's $S_p(g)$ classes.

Consider the weighted two-sided Hardy-Littlewood maximal operator defined by

$$
M_g f(x) = \sup_{h, s > 0} \left(\int_{x-s}^{x+h} |f| g \right) \left(\int_{x-s}^{x+h} g \right)^{1-1}.
$$

It is clear that the following relation holds:

$$
\frac{1}{2} (M_g^+ + M_g^-) \leq M_g \leq M_g^+ + M_g^-.
$$

We have the following results for M_g (see e.g. [5, 6]):

(i) Let $1 \leq p < \infty$. M_g is of weak type (p, p) with respect to the measures vdx and udx if and only if the pair (u, v) satisfies $A_p(g)$, i.e. $A_p(g)$: There exists $C > 0$ such that

$$
\left(\int_a^b u \right) \left(\int_a b \right)^{p-1} \leq C \left(\int_a^b g \right)^p
$$

for every interval (a, b) and $p > 1$.
$A_1(g)$: There exists $C > 0$ such that $M_g(g^{-1}u) \leq Cg^{-1}v$ a.e.

(ii) Let $1 < p < \infty$. M_g is of strong type (p, p) with respect to the measures vdx and udx if and only if the pair (u, v) satisfies $S_p(g)$, i.e.,

$S_p(g)$: There exists $C > 0$ such that for every interval (a, b)

$$\int_a^b |M_g(\chi_{(a,b)}g(\cdot)^{1/p-1})|^p u \leq C \int_a^b g^p \sigma < \infty.$$

Of course, if $u = v$ then $A_p(g)$ and $S_p(g)$ are equivalent conditions.

It follows from these results, our theorems, and (7.1) that $A_p(g) = A_p^+(g) \cap A_p^-(g) (1 \leq p < \infty)$ and $S_p(g) = S_p^+(g) \cap S_p^-(g) (1 < p < \infty)$. We will now give direct proofs of these equalities and so results (i) and (ii) will be consequences of the results in this paper.

Theorem 4. (a) $A_p(g) = A_p^+(g) \cap A_p^-(g) (1 \leq p < \infty)$.

(b) $S_p(g) = S_p^+(g) \cap S_p^-(g) (1 < p < \infty)$.

Proof of Theorem 4. (a) For $p = 1$ the equality is trivial by (7.1). Let $1 < p$. Since it is clear that $A_p^+(g) \cap A_p^-(g) \supset A_p(g)$ we only have to prove $A_p(g) \supset A_p^+(g) \cap A_p^-(g)$. Let (u, v) be in $A_p(g) \cap A_p^{-}(g)$, let a and c be real numbers with $a \leq c$, let N be a natural number, define $G^N(x) = (g^{-1}a)(x)$ if $g^{-1}a(x) < N$ and $G^N(x) = 0$ otherwise. There exists h such that

$$\int_a^c G_N = 2 \int_a^h G_N = 2 \int_h^c G_N.$$

Then

$$\int_a^c u \left(\int_a^c G_N \right)^{p-1} = 2^{p-1} \int_a^h u \left(\int_h^c G_N \right)^{p-1} + 2^{p-1} \int_h^c u \left(\int_a^h G_N \right)^{p-1} \leq 2^p C \left(\int_a^c g \right)^p \text{ by } A_p^+(g) \text{ and } A_p^-(g).$$

Letting N tend to infinity we get $A_p(g)$.

Finally, (b) follows clearly from (7.1).

B) Factorization. We will give here a result that generalizes the theorem of Coifman, Jones and Rubio de Francia [2] (see also [4]). As consequences, we will obtain the factorization of $A_p^+(g)$ and $A_p^-(g)$ weights.

Theorem 5. Let F and G be two sublinear operators acting on measurable functions of a measure space (X, \mathcal{M}, μ). For $p > 1$ let $W_p = \{w: F \text{ is bounded in } L^p(ud\mu)\}$ and $U_p = \{u: G \text{ is bounded in } L^p(ud\mu)\}$. Let g be a positive function, and let $W_1 = \{w: G(g^{-1}w) \leq Cg^{-1}w \text{ a.e.}\}$ and $U_1 = \{u: F(g^{-1}u) \leq Cg^{-1}u \text{ a.e.}\}$. Then $g^{p-1}W_1U_1^{-1-p} \supset W_p \cap g^p U_p^{-1-p}$, i.e., if $w \in W_p$ and $g^p w^{-1/p-1} \in U_p$ then there exist $w_0 \in W_1$ and $u_0 \in U_1$ such that $w = g^{p-1} w_0 u_0^{1/p-1}$.
If \(F = G \) and \(g = 1 \) we obtain the above-mentioned result of Coifman, Jones, and Rubio de Francia.

Proof. This proof follows the proof of Theorem 5.2 in [4], with the obvious changes. Suppose \(1 < p < 2 \). Let \(w \in W_p \cap g^p U_p^{1-p} \). We have to find \(v \) such that

(i) \(vw \in W_1 \), i.e., \(G(g^{-1} vw) \leq C g^{-1} vw \) a.e.,

(ii) \(gv^{1/p-1} \in U_1 \), i.e., \(F(v^{1/p-1}) \leq C v^{1/p-1} \) a.e.

Let us define an operator \(S \) by \(S(u) = |G(g^{-1} uw)|w^{-1} g + (F(|u|^{1/p-1}))^{p-1} \).

The operator \(S \) is positive, sublinear, and bounded on \(L^p(w) \). So, \(S \) verifies the conditions of Lemma 5.1 in [4], and it ensures the existence of such a \(v \). Then \(w_0 = vw \) and \(u_0 = g^{1/p-1} \).

Corollary 1. \(w \in A_+^p(g) \) if and only if \(w = g^{p-1} w_0 w_1^{1-p} \) with \(w_0 \in A_+^p(g) \) and \(w_1 \in A_-^1(g) \).

Proof. If in Theorem 5, we take \(F = M_g^+ \) and \(G = M_g^- \), the classes of good weights are, respectively \(W_p = A_+^p(g) \) and \(U_p = A_-^p(g) \). Then Theorem 5 assures

\[
g^{p-1} A_+^p(g)(A_-^1(g))^{1-p} \supset A_+^p(g) \cap g^p(A_-^p(g))^{1-p}.
\]

But \(A_+^p(g) \cap g^p(A_-^p(g))^{1-p} = A_+^p(g) \), and this proves the factorization of a weight in \(A_+^p(g) \).

Conversely, take \(w_0 \in A_+^p(g) \) and \(w_1 \in A_-^1(g) \), and let \(w = g^{p-1} w_0 w_1^{1-p} \). If \(a \leq b \leq c \),

\[
\int_a^b w \left(\int_b^c g^p w \left(w_1^{1-p} \right)^{p-1} \right)^{p-1} = \int_a^b w_0 \left(\int_b^c w_1^{1-p} \right)^{p-1} \leq C \left(\int_a^b w_0(x) \left(\int_x^{x+h} g \right)^{p-1} \left(\int_x^{x+h} w_1 \right)^{1-p} \right) \times \left(\int_b^c w_1(x) \left(\int_x^{x-s} g \right)^{p-1} \left(\int_x^{x-s} w_0 \right)^{1-p} \right)
\]

for every \(h, s > 0 \) by condition \(A_+^p(g) \) for \(w_0 \) and \(A_-^1(g) \) for \(w_1 \). In partic-
If \(h = c - x \) and \(s = x - a \) we obtain
\[
\int_a^b w \left(\int_b^c w_{p-1} \right)^{p-1} dx
\leq C \left(\int_a^c g \left(\int_a^b w_{0} \left(\int_x^c w_1 \right)^{-p} \right)^{1-p} \right)
\times \left(\int_b^c w_1(x) \left(\int_a^x w_0 \right)^{-p} \right)^{p-1}
\leq C \left(\int_a^c g \right)^p \left(\int_a^c w_1 \right)^{1-p} \left(\int_a^b w_0 \right)^{p-1} \left(\int_a^c w_0 \right)^{(1-p)(p-1)}
= C \left(\int_a^c g \right)^p .
\]

(C).

Theorem 6. If \(w \) is in \(A_1^+(g) \) then there exists \(\delta > 0 \) such that
\[
\int_a^b w^{-\delta} \left(\int_a^b g \right)^{-1} \leq C_\delta \int_a^b w \left(\int_a^b g \right)^{-\delta} \left(\int_a^b g^{-\delta} \right)w^\delta(b)
\]
for every \(a \) and a.e. \(b \). For this \(\delta \), \(g^{-\delta} w^{1+\delta} \) is in \(A_1^+(g) \).

Proof. Let \(a \) and \(b \) be real numbers with \(a < b \) and with \(b \) verifying
\[
M_{\overline{g}}(g^{-1}w)(b) \leq C(g^{-1}w)(b).
\]

Let \(O_\lambda = \{ x: M_{\overline{g}}(g^{-1}w)(x) > \lambda \} \) be open. Then there exists a sequence of pairwise disjoint open intervals \(I_j = (a_j, b_j) \) such that \(O_\lambda = \bigcup I_j \) with
\[
\int_a^x w \chi_{(a, b)} \left(\int_a^x g \right)^{-1} > \lambda \quad \text{for every } x \in (a_j, b_j)
\]

and with
\[
\int_{a_j}^{b_j} w \chi_{(a, b)} \left(\int_{a_j}^{b_j} g \right)^{-1} = \lambda \quad \text{for every } j.
\]

It is clear that each \(a_j \) is bigger than \(a \). Then, if \(\lambda > C(g^{-1}w)(b) \), where \(C \) is the \(A_1^+(g) \) constant of \(w \), each \(I_j \) verifies either \((a, b) \supset I_j \) or \(I_j \cap (a, b) = \emptyset \), since if \(I_j \) is not contained in \((a, b) \) and \(I_j \cap (a, b) \neq \emptyset \), then \(b \in I_j \) and therefore
\[
\int_{a_j}^{b_j} w \chi_{(a, b)} \left(\int_{a_j}^{b_j} g \right)^{-1} > \lambda > C(g^{-1}w)(b)
\]
which goes against the election of \(b \).
By Lebesgue's differentiation theorem we have that \(\{x \in (a, b) : (g^{-1}w)(x) > \lambda \} \) is contained in \(O_\lambda \). This relation, (7.3), and condition \(A_1^+(g) \) for \(w \) imply
\[
\int_{\{x \in (a, b) : (g^{-1}w)(x) > \lambda \}} w \leq \lambda \sum_{\{ j : (a, b) \ni I_j \}} \int_{I_j} g \leq \lambda \int_{\{x \in (a, b) : (g^{-1}w)(x) > \lambda \}} g.
\]

Let \(\delta > 0 \). Multiplying the last inequalities by \(\lambda^{\delta-1} \) and then integrating with respect to \(\lambda \) from \(C(g^{-1}w)(b) \) to \(+\infty \) we get
\[
\int_{C(g^{-1}w)(b)}^{+\infty} \lambda^{\delta-1} \left(\int_{\{x \in (a, b) : (g^{-1}w)(x) > \lambda \}} w(x) \, dx \right) \, d\lambda
\leq C^{\delta+1}(1 + \delta)^{-1} \int_a^b (g^{-1}w)^{1+\delta}(x)g(x) \, dx.
\]

On the other hand, the first item of (7.5) is equal to
\[
\int_a^b \left(\int_{C(g^{-1}w)(b)} (g^{-1}w)(x) \lambda^{\delta-1} \, d\lambda \right) w(x) \, dx
= \delta^{-1} \int_a^b g^{-\delta} w^{1+\delta} - C^\delta \delta^{-1} (g^{-1}w)^{\delta}(b) \int_a^b w.
\]
(7.5) together with (7.6) gives
\[
(\delta^{-1} - C^{1+\delta}(1 + \delta)^{-1}) \int_a^b g^{-\delta} w^{1+\delta} \leq C^\delta \delta^{-1} (g^{-1}w)^{\delta}(b) \int_a^b w.
\]
Choosing \(\delta \) such that \(\delta^{-1} - C^{1+\delta}(1 + \delta)^{-1} > 0 \), we obtain the result.

Corollary 2. Let \(1 < p < \infty \). If \(w \) is in \(A_p^+(g) \) then there exists \(\varepsilon > 0 \) such that \(p - \varepsilon > 1 \) and \(w \) is in \(A_{p-\varepsilon}^+(g) \).

Proof. Let \(w \in A_p^+(g) \). By factorization, there exist \(w_0 \) in \(A_1^+(g) \) and \(w_1 \) in \(A_1^{-}(g) \) such that \(w = g^{p-1}w_0w_1^{1-p} \). By Theorem 6 there exist \(\delta > 0 \) such that \(g^{-\delta}w_1^{1+\delta} \in A_1^+(g) \). Then
\[w = g^{p-1}w_0w_1^{1-p} = g^{p-\varepsilon}w_0(g^{-\varepsilon}w_1^{1+\delta})^{1-(p-\varepsilon)} \] with \(\varepsilon = \delta(p-1)(1 + \delta)^{-1} \) and the result follows from Corollary 1.

Corollary 3. If \(w \in A_1^+(g) \) then there exists \(\gamma \) with \(0 < \gamma < 1 \), a function \(k \) with \(k \) and \(k^{-1} \) in \(L^\infty \), and a function \(f \) such that \(w = kg(M_g^{-\gamma}f) \).

Proof. By Theorem 6, there exists \(\delta > 0 \) such that \(M_g^{-\delta}(g^{-1}w)^{1+\delta})^{1/(1+\delta)} \leq Cg^{-1}w \) a.e. On the other hand, Lebesgue's differentiation theorem gives \(g^{-1}w \leq (M_g^{-\delta}(g^{-1}w)^{1+\delta})^{1/(1+\delta)} \). Let \(k(x) = g^{-1}(x)w(x)(M_g^{-\delta}(g^{-1}w)^{1+\delta}(x))^{-1/(1+\delta)} \). Then \(C^{-1} \leq k \leq 1 \) and \(w = kg(M_g^{-\gamma}f) \) where \(\gamma = (1 + \delta)^{-1} \) and \(f = (g^{-1}w)^{1+\delta} \).
(D) Extrapolation. We can also state the following theorem.

Theorem 7. Let T be a sublinear operator acting on measurable functions on \mathbb{R}. Suppose that for a certain p_0, $1 \leq p_0 < \infty$, and for every w in $A^+_p(g)$, T is of weak type (p_0, p_0) with respect to the measure wdx. Then for every p with $1 < p < \infty$ and every w in $A^+_p(g)$, T is bounded on $L^p(wdx)$.

The proof follows that of [3] with the obvious changes, which are essentially the definition of G in Lemma 1 in [3] (now $G = (gM_g^{-}(g^{-1}h^{1/t}w)w^{-1})$) and the fact that w is in $A^+_p(g)$ if and only if $g^{p'}\sigma$ is in $A^-_p(g)$.

References