THE v_1-PERIODIC HOMOTOPY GROUPS
OF AN UNSTABLE SPHERE AT ODD PRIMES

ROBERT D. THOMPSON

Abstract. The mod p v_1-periodic homotopy groups of a space X are
defined by considering the homotopy classes of maps of a Moore space into X
and then inverting the Adams self map. In this paper we compute the mod p v_1-
periodic homotopy groups of an odd dimensional sphere, localized at an odd
prime. This is done by showing that these groups are isomorphic to the stable
mod p v_1-periodic homotopy groups of $B\Sigma_p^{2(p-1)n}$, the $2(p-1)n$ skele-
ton of the classifying space for the symmetric group Σ_p. There is a map
$\Omega^{2n+1}S^{2n+1} \to \Omega^\infty(J \wedge B\Sigma_p^{2(p-1)n})$, where J is a spectrum constructed from
connective K-theory, and the image in homotopy is studied.

1. Introduction

The main objective of this paper is to compute the v_1-periodic homotopy
groups of an unstable sphere at odd primes. This is done by carrying out an
odd primary analogue of a program developed for $p = 2$ by Mark Mahowald
[M1]. As is often the case, the calculations done here at odd primes are simpler
than their $p = 2$ counterparts, so another purpose of this work could be to
illuminate the $p = 2$ case.

For a 2-connected space X the v_1-periodic homotopy groups of X are
defined as follows. Let M^n denote a mod p Moore space with top cell in di-
mension n, where p is an odd prime. Let $\pi_n(X; \mathbb{Z}/p)$ denote the mod p
homotopy groups of X, i.e., the homotopy classes of maps from M^n to X.
These homotopy groups are \mathbb{Z}/p vector spaces. In his seminal paper $J(X)$-
IV, [A], J. F. Adams constructed a map $v_1 : M^{2(p-1)+n} \to M^n$, $n \geq 4$, which
induces an isomorphism in K-theory. In fact, it is shown in [CN] that v_1
can be constructed for $n = 3$. We can define a $\mathbb{Z}/p[v_1]$-module structure
on $\pi_\ast(X; \mathbb{Z}/p)$ by setting $v_1\alpha = \alpha \circ v_1$ for each $\alpha : M^n \to X$. Then the
mod p v_1-periodic homotopy groups of X are defined to be

$$\pi_\ast(X; \mathbb{Z}/p) \otimes_{\mathbb{Z}/p[v_1]} \mathbb{Z}/p[v_1, v_1^{-1}],$$

which we denote simply by $v_1^{-1}\pi_\ast(X; \mathbb{Z}/p)$. Inverting v_1 annihilates the sub-
group of v_1-torsion elements and the resulting periodic groups are in general
much smaller and hopefully tractable.

Received by the editors April 11, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 55R35.
The author was partially supported by the NSF.

©1990 American Mathematical Society
0002-9947/90 $1.00 +$.25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
To compute $v_1^{-1} \pi_*(S^{2n+1}; \mathbb{Z}/p)$, we show that it is isomorphic to the stable v_1-periodic homotopy groups of $(B\Sigma_p)^{2n(p-1)}$, where $(B\Sigma_p)^{2n(p-1)}$ denotes the $2n(p-1)$ skeleton of the classifying space for the symmetric group on p objects, localized at p. Set $q = 2(p - 1)$. Denoting $\Omega^\infty \Sigma^\infty(X)$ by $Q(X)$, there is a Hopf-James-Snaith map

$$s : \Omega^{2n+1}S^{2n+1} \to Q((B\Sigma_p)^{qn})$$

and the main theorem of this paper is

Theorem 1.1.

$$v_1^{-1} \pi_*(\Omega^{2n+1}S^{2n+1}; \mathbb{Z}/p) \to v_1^{-1} \pi_*(Q((B\Sigma_p)^{qn}); \mathbb{Z}/p)$$

is an isomorphism for all $n \geq 1$.

This is proved by induction on the dimension of the sphere, after first computing the v_1-periodic homotopy groups of the fiber of the double suspension map. More precisely, let $W(n)$ denote the fiber of the map $S^{2n-1} \to \Omega^2S^{2n+1}$. In [C], Fred Cohen constructs a map $W(n) \to Q(M^{2np-2})$. In §2, following Mahowald [M1, M2, MT], we show that this map induces an isomorphism of v_1-periodic homotopy groups. This is proved by constructing a tower of fibrations for $W(n)$ which yields a spectral sequence having as its E_2-term the homology of a certain subquotient of the lambda algebra. This E_2-term was analyzed in detail in [M2] for $p = 2$ and in [HM1] for p odd and was shown to be isomorphic to the stable E_2-term for the Moore space after inverting v_1. We show that Cohen’s map induces this isomorphism, yielding the result in homotopy. The significance of this is that the unstable v_1-periodic homotopy groups of the space $Q(M)$ are the stable v_1-periodic homotopy groups of M, and these stable groups have been calculated by H. Miller in [Mi1].

The stable v_1-periodic homotopy groups of a spectrum are described very conveniently in terms of J-homology. The spectrum J is a certain spectrum constructed from connective K-theory such that the homotopy groups of J at an odd prime are isomorphic to the image of the classical J-homomorphism [W, A]. In §3 the basic properties of the J spectrum and the computation of $J_*(B\Sigma_p^m)$ are reviewed and the following explicit corollary is derived:

Corollary 1.2. $v_1^{-1} \pi_*(\Omega^{2n+1}S^{2n+1}; \mathbb{Z}/p)$ is isomorphic to a free module over $\mathbb{Z}/p[v_1, v_1^{-1}]$ on four generators in dimensions $qn - 2$, $qn - 1$, $qn - 1$, qn.

So far we have only considered homotopy with \mathbb{Z}/p coefficients. We would like to describe the homotopy classes in $\pi_*(S^{2n+1})$ with integral coefficients (localized at p) which are detected by $J_*((B\Sigma_p)^{qn})$. The groups $J_*(B\Sigma_p^{qn})$ are cyclic and concentrated in dimensions of the form $qk - 1$ and $qk - 2$. The following is proved in §4.
Theorem 1.3. The composite
\[\pi_{qk-1}(\Omega^{2n+1} S^{2n+1}) \to \pi^{S}_{qk-1}(B^{q_n}) \to J_{qk-1}(B^{q_n}) \]
is surjective for \(k \geq 1 \). The composite
\[\pi_{qk-2}(\Omega^{2k+1} S^{2n+1}) \to \pi^{S}_{qk-2}(B^{q_n}) \to J_{qk-2}(B^{q_n}) \]
is surjective if \(k > n + \nu(k) \).

This appears as conjecture 1.5.21(a) in [R1] and there is a discussion there and in [R2] as to how it pertains to calculations with the EHP spectral sequence. Theorem 1.3 is closely related to results obtained independently by M. Bendersky [Be] and B. Gray [Gl, G2].

This paper is distilled from the author's University of Washington Ph.D. thesis. The author wishes to thank Doug Ravenel, Mark Mahowald, Haynes Miller, and Don Davis for helpful discussions on this and other related topics. Also the author wishes to thank the referee for many helpful suggestions; in particular the referee and Mark Mahowald suggested the proof given here of 2.29, which is an improvement over the original proof.

2. The proof of Theorem 1.1

Assume that all spaces are localized at a fixed odd prime \(p \). Theorem 1.1 is proved by analyzing the fiber of double suspension. More precisely, let \(W(n) \) denote the fiber of the map
\[S^{2n-1} \to \Omega^2 S^{2n+1} \]
which induces the double suspension homomorphism. We have a commutative diagram
\[
\begin{array}{ccc}
\Omega^{2n-1} W(n) & \longrightarrow & \Omega^{2n-1} S^{2n-1} \\
\downarrow w_n & & \downarrow s_{n-1} \\
Q(M^{q_{n-1}}) & \longrightarrow & Q(B\Sigma_p^{q(n-1)}) \\
\end{array}
\]
where the top row is \(\Omega^{2n-1} \) applied to the fiber sequence defining \(W(n) \), and the bottom row is a quasifibration because the functor \(Q \) converts cofibrations to quasifibrations. The map \(w_n \) is the induced map of fibers. The commutativity of the right-hand square is proved in [Ku]. Note that \(W(1) \) is homotopy equivalent to \(\Omega^3 S^3 \). By applying \(v_1^{-1} \pi_* ; \mathbb{Z}/p \) to diagram (2.1) we get a long exact sequence in \(v_1 \)-periodic homotopy groups from the top row, and this maps to a long exact sequence for the bottom row. Therefore Theorem 1.1 follows immediately from induction on \(n \) and the five lemma and the following theorem:

Theorem 2.2. The induced homomorphism
\[w_* : v_1^{-1} \pi_* (\Omega^{2n-1} W(n); \mathbb{Z}/p) \to v_1^{-1} \pi_* (Q(M^{q_{n-1}}); \mathbb{Z}/p) \]
is an isomorphism for \(n \geq 1 \).
The motivation for Theorem 2.2 follows from an algebraic version of the theorem involving the lambda algebra [M2, HM1]. In order to explain this we will begin by summarizing some basic facts about the lambda algebra.

A subquotient of the lambda algebra. For an odd prime p the lambda algebra Λ is a bigraded \mathbb{Z}/p-algebra generated by elements $\{\lambda_i\}$ for $i \geq 1$ and subject to certain multiplicative relations called "Adem relations." See [6A] or [HM1] for details.

We will index elements by (s, t) where s is the homological degree and $t - s$ is the stem degree. Thus λ_i has bidegree $(1, qi)$ and μ_i has bidegree $(1, qi + 1)$. Using the Adem relations one can show that Λ has a \mathbb{Z}/p basis consisting of monomials in λ_i and μ_i which are admissible; in other words which satisfy the following conditions:

\begin{align*}
&\text{(i) whenever } \lambda_i \lambda_j \text{ or } \lambda_i \mu_j \text{ occurs then } j < pi, \\
&\text{(ii) whenever } \mu_i \lambda_j \text{ or } \mu_i \mu_j \text{ occurs then } j \leq pi.
\end{align*}

Λ is a differential graded algebra and Λ is filtered by subcomplexes $\Lambda(n)$, $n \geq 0$, defined by

(i) If $n = 2m$, $\Lambda(n)$ is the subspace spanned by admissible monomials beginning with λ_i for $i \leq m$ or μ_i for $i < m$.

(ii) If $n = 2m + 1$, $\Lambda(n)$ is the subspace spanned by admissible monomials beginning with λ_i for $i \leq m$ or μ_i for $i \leq m$.

In fact $\Lambda(n)$ turns out to be a subalgebra. For a proof see [HM1]. The relevance of $\Lambda(n)$ to homotopy groups is the topic of [6A]. There it is proved that $\Lambda(n)$ is the E_1-term of an unstable Adams spectral sequence for S^n. The inclusion $\Lambda(n) \to \Lambda(n + 1)$ is the map of E_1-terms induced by the suspension map $S^n \to \Omega S^{n+1}$. We will go into more detail about unstable Adams spectral sequences later, but for now we confine our attention to the algebraic picture. Define $\Lambda(W(n))$ to be the quotient chain complex

$$
\Lambda(2n + 1)/\Lambda(2n - 1).
$$

Thus we have a short exact sequence of chain complexes

\begin{equation}
0 \to \Lambda(2n - 1) \to \Lambda(2n + 1) \to \Lambda(W(n)) \to 0.
\end{equation}

By (2.3) we have short exact sequences of chain complexes

\begin{align*}
(2.5) & \quad 0 \to \Lambda(2n - 1) \to \Lambda(2n) \xrightarrow{h} \lambda_n \Lambda(2pn - 1) \to 0, \\
(2.6) & \quad 0 \to \Lambda(2n) \to \Lambda(2n + 1) \xrightarrow{h} \mu_n \Lambda(2pn + 1) \to 0.
\end{align*}

Here $\lambda_n \Lambda(2pn - 1)$ is defined to be a 1-dimensional \mathbb{Z}/p vector space with basis element λ_n in bidegree $(0, 0)$ and trivial differential, tensored with $\Lambda(2pn - 1)$. $\mu_n \Lambda(2pn + 1)$ is defined similarly only we give μ_n bidegree $(0, 1)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
The maps h and \bar{h} are defined by

$$h(\nu) = \begin{cases} 0 & \text{if } \nu \neq \lambda_n \alpha \text{ for any } \alpha, \\ \lambda_n \alpha & \text{if } \nu = \lambda_n \alpha \text{ for some } \alpha, \\ 0 & \text{if } \nu \neq \mu_n \alpha \text{ for any } \alpha, \\ \mu_n \alpha & \text{if } \nu = \mu_n \alpha \text{ for some } \alpha. \end{cases}$$

$$\bar{h}(\nu) = \begin{cases} 0 & \text{if } \nu \neq \lambda_n \alpha \text{ for any } \alpha, \\ \lambda_n \alpha & \text{if } \nu = \lambda_n \alpha \text{ for some } \alpha, \\ 0 & \text{if } \nu \neq \mu_n \alpha \text{ for any } \alpha, \\ \mu_n \alpha & \text{if } \nu = \mu_n \alpha \text{ for some } \alpha. \end{cases}$$

It is easy to check that (2.5) and (2.6) are indeed short exact sequences of chain complexes. The reader familiar with the odd primary EHP sequence will immediately recognize (2.5) and (2.6) as algebraic analogues.

Furthermore we have the following diagram of chain complexes:

$$\begin{array}{ccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
0 \to \Lambda(2n-1) & \to \Lambda(2n) & \to \Lambda(2pn-1) \\
\downarrow \cong & \downarrow & \downarrow \\
0 & \to \Lambda(2n-1) & \to \Lambda(2n+1) & \to \Lambda(W(n)) \to 0 \\
\downarrow & \downarrow & \downarrow \\
0 & \to \bar{\mu}_n \Lambda(2pn+1) & \to \bar{\mu}_n \Lambda(2pn+1) \to 0 \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0
\end{array}$$

which reveals an isomorphism

$$(2.8) \quad \Lambda(W(n)) \cong \lambda_n \Lambda(2pn-1) \oplus \mu_n \Lambda(2pn+1).$$

Since λ_n and μ_n are λ_n and μ_n reindexed, the above groups have been indexed so that for each $W(n)$, the lower left corner occurs at $(s, t) = (0, 0)$; i.e., $W(n)^s,t = 0$ if $s < 0$ or $t - s < 0$ and $W(n)^0,0 = \mathbb{Z}/p$.

In [HM1] the differential in $\Lambda(W(n))$ is described in terms of the splitting (2.8) as follows:

Proposition 2.9 (Proposition 2.10 of [HM1]). Let $n > 0$, $\alpha \in \Lambda(2pn - 1)$, $\nu \in \Lambda(2pn + 1)$. Then in $\Lambda(W(n))$

$$d(\lambda_n \alpha + \mu_n \nu) = \lambda_n (d\alpha + \mu_0 \nu) - \mu_n d\nu.$$

From this it follows that the inclusion given by

$$\lambda_n \alpha + \mu_n \nu \to \lambda_{n+1} \alpha + \mu_{n+1} \nu$$

is a map of chain complexes of bidegree $(0, 0)$ and induces a map in homology

$$(2.10) \quad H^{s,t}(\Lambda(W(n))) \to H^{s,t}(\Lambda(W(n + 1))).$$

Furthermore $\bigcup_n \Lambda(W(n))$ is an E_1-term for the stable homotopy of the Moore spectrum M.

We can now state the main theorem of [HM1].
Theorem 2.11 (Metastability theorem of [HM1]). For $1 \leq n \leq k$ the induced map in homology

$$H^{s,t}(\Lambda(W(n))) \to H^{s,t}(\Lambda(W(k)))$$

is an isomorphism for

$$t-s < 2(p^2 - 1)(s-2) + pqn - 2p - 2$$

and an epimorphism for

$$t-s \leq 2(p^2 - 1)(s-2) + pqn - 2p - 2.$$

In the $(t-s, s)$ plane this is an isomorphism above a line of slope $1/2(p^2-1)$. A $\mathbb{Z}/p[v_j]$-module structure is defined on $\Lambda(W(n))$ as follows:

Definition 2.12. If $\bar{\lambda}_n \alpha + \bar{\mu}_n \nu \in \Lambda(W(n))$ define

$$v_1(\bar{\lambda}_n \alpha + \bar{\mu}_n \nu) = -\bar{\mu}_n(\bar{\lambda}_1 \alpha + \bar{\mu}_1 \nu).$$

It is readily verified using the Adem relations that this defines $v_1: \Lambda(W(n)) \to \Lambda(W(n))$ as a bidegree $(1, q+1)$ chain map which actually maps $\Lambda(W(n))$ to the image of $\Lambda(W(n-1))$. Since the map v_1 has $(1, q+1)$ for bidegree, if $x \in \Lambda(W(n))$, $v_1^k x$ is in the range of isomorphism for Theorem 2.11 for some k. So Theorem 2.11 has the following corollary:

Corollary 2.13. For $1 \leq n \leq k$ the induced map

$$v_1^{-1}H^{s,t}(\Lambda(W(n))) \to v_1^{-1}H^{s,t}(\Lambda(W(k)))$$

is an isomorphism.

Unstable Adams resolutions. To prove Theorem 2.2 we will use an unstable Adams spectral sequence type of approach. Unfortunately if we try to construct a spectral sequence for computing the homotopy groups of $W(n)$ using the standard machinery of [BK], the E_2-term which would result would not resemble $H^{*,*}(\Lambda(W(n)))$. This difficulty will be avoided however by using Mahowald's construction of the "resolution of the fiber".

We begin by reviewing the general notion of a resolution of a space.

Definition 2.14. Let X be space which is p-local and simply connected. By a resolution of X we mean a diagram

$$
\cdots \to X_3 \xrightarrow{p_2} X_2 \xrightarrow{p_1} X_1 \xrightarrow{p_0} X_0
$$

such that:

(i) Each F_i is a generalized Eilenberg-Mac Lane space $K(V_i)$ where V_i is a locally finite graded \mathbb{Z}/p vector space. If V_j denotes the homogeneous part of a graded \mathbb{Z}/p vector space V in degree j then $K(V) = \prod_j K(V^j, j)$.

(ii) Each $F_i \to X_i \xrightarrow{p_{i-1}} X_{i-1}$ is a principal fibration with classifying map $g_{i-1}: X_{i-1} \to BF_i$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(iii) There are maps $f_i : X \to X_i$ and commutative diagrams

$$
\begin{array}{ccc}
X & \xrightarrow{f_i} & X_i \\
\| & & \downarrow p_{i-1} \\
X & \xrightarrow{f_{i-1}} & X_{i-1}
\end{array}
$$

such that the induced map $f : X \to \text{holim} X$ is a p-completion.

Definition 2.15. Given a resolution of a space X there is a spectral sequence defined by

$$E^{s,t}_1(X) = \pi_{t-s}(F_s), \quad \text{where } d_{i} : E^{s,t}_1(X) \to E^{s+1,t}_1(X)$$

is the homomorphism induced by the composite

$$F_i \to X_i \to BF_{i+1}.$$

There is a decreasing filtration of $\pi_* X$ defined by

$$F_j \pi_* X = \text{ker}(\pi_* X \to \pi_* X_j)$$

where $\bigcap_{j \geq 0} F_j \pi_* X = 0$ and the E_∞-term will be the graded vector space associated to the filtration defined above.

Of course in the generality of Definitions 2.14 and 2.15 it is difficult to say anything systematic about the E_2-term for an arbitrary space or even a family of spaces satisfying certain “nice” conditions. Furthermore such resolutions need not satisfy any “functoriality.” A more strict notion would be as follows:

Definition 2.16. A resolution of a space X is called an Adams resolution if, in addition to (i)–(iii) above, we require:

(iv) $\ker p_i^* = \ker f_i^*$,

(v) f_0^* is surjective.

Notation. We will use the notation of [M1] and [MT]. Thus a resolution of X will be denoted by X' and the fibrations involved will be denoted by

$$F_i(X') \to X_i(X') \to X_{i-1}(X')$$

or simply

$$F_i(X) \to X_i(X) \to X_{i-1}(X)$$

if there is no ambiguity as to which resolution we are considering. Note that if X' is a resolution of X, then we can obtain a resolution of $\Omega^k X$ by applying Ω^k to X'. However, if X' is an Adams resolution then the resolution $\Omega^k X'$ will, in general, not be an Adams resolution.

Definition 2.17. A map of resolutions $f' : X' \to Y'$ covering a map $f : X \to Y$ is a sequence of maps $f_s : X_s(X) \to X_s(Y)$ making the following diagram
commute for $s \geq 0$:

$$
\begin{align*}
X_{s+1}(X) & \xrightarrow{f_{s+1}} X_{s+1}(Y) \\
X_{s}(X) & \xrightarrow{f_{s}} X_{s}(Y) \\
X & \xrightarrow{f} Y
\end{align*}
$$

The following is proved in [M1]:

Proposition 2.19. If $f: X \to Y$ is a map and X' is an Adams resolution of X, then, for any resolution Y' of Y, there is a map of resolutions

$$f': X' \to Y'$$

which covers f.

Thus Proposition 2.19 gives an example of the “functorial” behavior of Adams resolutions.

Remark. A map $f': X' \to Y'$ covering a map $f: X \to Y$ gives rise to a map of spectral sequences simply by considering the map of fibers induced by the diagram

$$
\begin{array}{ccc}
F_s(X) & \to & X_s(X) \\
\downarrow f_1 & & \downarrow f_1 \\
F_s(Y) & \to & X_s(Y)
\end{array}
$$

f_1 then induces a map of chain complexes:

$$E_{s, t}^1(X) \xrightarrow{(f_1^* \cdot E_{s, t}^1(Y).$$

In general it would be difficult to get a handle on the induced map of E_2-terms since these E_2-terms would not have any nice description. However in the special cases to which we will be applying these notions we will be able to determine the induced map of E_2-terms in a range of interest.

Now we give Mahowald’s construction of the resolution of the fiber of a map.

Proposition 2.20. Let $f': X' \to Y'$ be a map of resolutions covering a map $f: X \to Y$ and let (f) denote the homotopy theoretic fiber of f. Then there is a resolution of (f), denoted by $(f)'$ and a short exact sequence

$$0 \to E_{-1}^1((f)) \to E_{1}^1(X) \to E_{1}^1((f)) \to 0.$$

In the corresponding long exact sequence

$$
\cdots \to E_2^s, t((f)) \to E_2^s, t(X) \xrightarrow{\partial} E_2^s, t(Y) \to E_2^{s+1}, t(f) \to \cdots
$$

the boundary map ∂ is the map of E_2-terms induced by f'.

The construction of $(f)'$ is given in [M1]. The second statement about the boundary map ∂ is used implicitly in [M1] and is proved in [MT] along with a proof of the following proposition.
Definition 2.22. A resolution X' of a space X is called minimal if $E_2^{s,t}(X') = E_1^{s,t}(X')$.

Proposition 2.23. For any resolution X', there is a minimal resolution of ΩX, denoted by $\Omega X'$, such that there are lifts of the identity map of ΩX to

$$f': \Omega(X') \to \Omega X' \quad \text{and} \quad g': \Omega X' \to \Omega(X')$$

with f' and g' inducing isomorphisms in $E_2^{s,t}$.

A resolution of $W(n)$. Returning to our discussion of the homotopy of $W(n)$ we construct a resolution for $W(n)$ as follows:

Proposition 2.24. There exists a resolution of $W(n)$, denoted by $W(n)'$, with E_2-term isomorphic to $H^{s,t}(A(W(n)))$.

Proof. By the results of [6A] there is an Adams resolution of S^{2n-1} with $E_1^{s,t}(S^{2n-1})$ equal to $\Lambda(2n - 1)$ as a differential vector space. Denote this by $(S^{2n-1})'$. Let $\Omega^2((S^{2n+1})')$ be double loops on the corresponding resolution for S^{2n+1}. There is a map of resolutions $(S^{2n-1})' \to \Omega^2(S^{2n+1})'$ inducing the inclusion $\Lambda(2n - 1) \to \Lambda(2n + 1)$. Apply Proposition 2.20 to this map of resolutions to obtain a resolution $W(n)'$ of $W(n)$ and compare the long exact sequence corresponding to the middle row of diagram (2.7) with the long exact sequence of Proposition 2.20:

$$\cdots \to H^{s,t}(2n - 1) \xrightarrow{i} H^{s,t}(2n + 1) \to H^{s,t}(W(n)) \to H^{s+1,t}(2n - 1) \to \cdots$$

and

$$\cdots \to E_2^{s,t}(S^{2n-1}) \xrightarrow{\partial} E_2^{s,t}(S^{2n+1}) \to E_2^{s,t}(W(n)) \to E_2^{s+1,t}(S^{2n-1}) \to \cdots.$$

Since $\partial = i_*$, it follows that $E_2^{s,t}(W(n)) \cong H^{s,t}(\Lambda(W(n)))$ as bigraded \mathbb{Z}/p vector spaces. □

Now consider the following result due to Fred Cohen.

Proposition 2.25 [C]. There is a map $W(n) \xrightarrow{c} \Omega^{2p}W(n + 1)$ which is degree one on the bottom cell. Furthermore the homotopy direct limit of the following sequence

$$W(n) \xrightarrow{c} \Omega^{2p}W(n + 1) \xrightarrow{\Omega^{2p}} \Omega^4pW(n + 2) \to \cdots$$

is $Q(M^{2np-2})$.

By applying Ω^{2p} to the resolution $W(n + 1)'$, we obtain a resolution for $\Omega^{2p}W(n + 1)$, with E_2-term $H_*(\Lambda(2n + 3)/\Lambda(2n + 1))$, suitably indexed.

Our goal is to produce a map of resolutions

$$c': W(n) \to \Omega^{2p}(W(n + 1))$$

which induces the isomorphism of Theorem 2.11 in a suitable range of dimensions, and use this to conclude that the map c induces an isomorphism in
ν_1-periodic homotopy groups. Unfortunately, since $W(n)$ is not an Adams resolution we do not get c' for free. However it turns out that the obstructions to obtaining c' do indeed vanish.

To see why this is true it is necessary to consider the extent to which properties (iv) and (v) of Definition 2.16 remain true after looping an Adams resolution some number of times. This is carried out at all primes in [HM2]. We will defer the discussion of that analysis as well as the proof of the following proposition until the end of the section.

Proposition 2.26. Let $W(n)$ be the resolution of Proposition 2.24, reindexed so that $X_0 = K(\mathbb{Z}/p, 2np - 3)$. Then $W(n)$ has the following properties:

(i) $$\ker\{p^*_s : H^* X_s(W(n)) \to H^* X_{s+1}(W(n))\} = \ker\{f^*_s : H^* X_s(W(n)) \to H^* W(n)\}.$$

(ii) $$f^*_s : H^k X_s(W(n)) \to H^k W(n)$$ is surjective for

$$k < (2np - 3)p^{s+1} + (p - 2)p^s.$$

We now construct a map of resolutions.

Theorem 2.27. Let $\Omega^{2p} W(n+1)$ denote the minimal resolution (as in Proposition 2.23) associated to $\Omega^{2p} W(n+1)$. Then there exists a map of resolutions $c : W(n) \to \Omega^{2p} W(n + 1)$ covering the map $c : W(n) \to \Omega^{2p} W(n + 1)$.

Proof. Since c is nontrivial in cohomology in the bottom dimension $2np - 3$, there is a map c_0 making the following diagram commute:

$$\begin{array}{ccc}
X_0(W(n)) & \xrightarrow{c_0} & X_0 \Omega^{2p}(W(n+1)) \\
\uparrow f_0 & & \uparrow f_0 \\
W(n) & \xrightarrow{c} & \Omega^{2p} W(n+1)
\end{array}$$

Now assume, inductively, that we have a map c_s so that the outer rectangle in the following diagram commutes:

$$\begin{array}{ccc}
W(n) & \xrightarrow{c} & \Omega^{2p} W(n+1) & \xrightarrow{F_{s+1}(\Omega^{2p} W(n+1))} \\
\downarrow f_{s+1} & & \downarrow f_{s+1} \\
X_{s+1}(W(n)) & \xrightarrow{c_{s+1}} & X_{s+1}(\Omega^{2p} W(n+1)) \\
\downarrow p_s & & \downarrow p_s \\
X_s(W(n)) & \xrightarrow{c_s} & X_s(\Omega^{2p} W(n + 1)) & \xrightarrow{BF_{s+1}(\Omega^{2p} W(n+1))} \\
\downarrow g_s & & \downarrow g_s
\end{array}$$
We wish a map c_{s+1} making both the top half rectangle and the bottom half rectangle commute. Consider the cohomology classes in $H^*X_{s}(W(n))$ represented by the map $g_{s}c_{s}$. These classes are in the kernel of $f_{s}^* = (p_{s}f_{s+1})^*$ by commutativity of the outer rectangle and the fact that $g_{s}p_{s}$ is null. Hence they are in the kernel of p_{s}^* by Proposition 2.26(i). So there exists a map $\tilde{c}_{s+1}: X_{s+1}(W(n)) \to X_{s+1}(\Omega^{2p}W(n + 1))$ making the lower rectangle commute. The upper rectangle need not commute. The difference $\tilde{c}_{s+1}f_{s+1} - f_{s+1}c$ lifts to a map $d: W(n) \to F_{s+1}(\Omega^{2p}W(n + 1))$ which represents cohomology classes in $H^*W(n)$. Now, since $\Omega^{2p}W(n + 1)$ is minimal,

$$\pi_*(F_{s+1}(\Omega^{2p}W(n + 1))) \cong H_{s+1}^*(\Lambda(W(n + 1))).$$

By (2.8),

$$H_{s+1}^*(\Lambda(W(n + 1))) \cong H_{s+1}^*(\Lambda(2(n + 1)p - 1) \oplus \Lambda(2(n + 1)p + 1)).$$

So we can use this to estimate the dimension of the highest dimensional cohomology class given by d.

$\Lambda_{s+1}(2(n+1)p+1)$ has a basis of admissible monomials $\kappa_{i_1} \kappa_{i_2} \cdots \kappa_{i_{s+1}}$, where $\kappa_{i_1} = \lambda_{i_1}$ or μ_{i_1}, $i_1 \leq (n+1)p$, and $i_k \leq p_{i_{k-1}}$. So the dimension of the largest such monomial is

$$(2.28) \quad q(n + 1)(p + p^2 + \cdots + p^{s+1}) + 2np - 2.$$

But $f_{s+1}^*: H^*X_{s+1}(W(n)) \to H^*W(n)$ is surjective through dimensions

$$(2np - 3)p^{s+2} + (p - 2)p^{s+1}$$

by Proposition 2.26(ii), which is larger than the quantity in (2.28), unless $p = 3$ and $n = 1$. Hence d extends to map $\tilde{d}: X_{s+1}(W(n)) \to F_{s+1}(\Omega^{2p}W(n + 1))$.

So if we define $c_{s+1} = \tilde{c}_{s+1} - i_{s+1}\tilde{d}$, then c_{s+1} will have the properties we seek, completing the proof of Theorem 2.27 except in the special case of $p = 3$ and $n = 1$. To treat the case where $n = 1$, note that the map $W(1) \to \Omega^{2p}W(2)$ can be constructed to factor as $W(1) \to \Omega^3S^{2p+1}\{p\} \to \Omega^{2p}W(2)$ [C], where the middle space is the fiber of the pth power map. These maps deloop, see [Se] for example, so we have $BW(1) \to \Omega^2S^{2p+1}\{p\} \to \Omega^{2p-1}W(2)$. Using Proposition 2.20, construct resolutions for each of these spaces and a dimensional analysis as above shows that the delooped maps are covered by maps of resolutions.

Before completing the proof of Theorem 2.2 we state a lemma whose proof is given at the end of the section.

Lemma 2.29. The map of resolutions c^\wedge constructed in Theorem 2.27 induces in E_2-terms the map of (2.10).

To complete the proof of Theorem 2.2 let F_n be the fiber of $c: W(n) \to \Omega^{2p}W(n + 1)$. By Proposition 2.20 we have a resolution $(F_n)^\wedge$, and by the long exact sequence of E_2-terms, the E_2-term of $(F_n)^\wedge$ has a vanishing line of slope
Given a mod p homotopy class $\alpha: M^k \to F_n$, with filtration s, the filtration of $v_1\alpha$ must be at least $s+1$, since $v_1: M^{k+q} \to M^k$ is trivial in cohomology. For any class $\alpha \in \pi_*(F_n; Z/p)$, $v_1\alpha$ has filtration above the vanishing line for some j, hence must be 0. So $v_1^{-1}\pi_*(F_n; Z/p) = 0$ and by the long exact sequence in homotopy c induces an isomorphism in mod p v_1-periodic homotopy. It follows by Proposition 2.25 that there is an isomorphism
\begin{equation}
(2.30) \quad v_1^{-1}\pi_*(W(n); Z/p) \cong v_1^{-1}\pi_*(S_1(M_{2np-3}; Z/p)).
\end{equation}
Now observe that the map
$$\Omega^{2n-1}C: \Omega^{2n-1}W(n) \to Q(M^{qn-1})$$
is not necessarily the same as the map
$$\omega_n: \Omega^{2n-1}W(n) \to Q(M^{qn-1})$$
of (2.1). However the v_1-periodic homotopy of the source and target are isomorphic. To finish the proof of Theorem 2.2 we must invoke the calculation of $v_1^{-1}\pi_*(M_0; Z/p)$ given in [Mi1].

Theorem 2.31 (Miller [Mi1]). Let K denote the graded field $Z/p[v_1, v_1^{-1}]$. Then $v_1^{-1}\pi_*(M_0; Z/p)$ is a free K module on four generators in dimensions $-2, -1, -1, 0$.

One readily checks that the map ω_n of (2.1) maps these four generators nontrivially in mod p homotopy, which gives Theorem 2.2. \(\square\)

Now we discuss the proof of Proposition 2.26.

Looping Adams resolutions. The topic of [HM2] is the effect of applying the functor Ω^k to an Adams resolution for a space X, where X satisfies the condition that the cohomology of X is a free unstable algebra over the Steenrod algebra. For a precise characterization of free unstable \mathscr{A}-algebras, see [MPI, Ba]. Another account of this material can be found in [H]. At an odd prime p, S^{2n+1} is such a space so the main theorem of [HM2] is applicable. The result is

Proposition 2.32 [HM2]. Let X' be an Adams resolution for S^{2n+1} and assume that $k < 2n+1$.

(i) The homomorphism
\[(\Omega^k f_s)^i: H^i(X_i(\Omega^k S^{2n+1})) \to H^i(\Omega^k S^{2n+1})\]
is surjective if
\[i < (2n + 1 - k)p^{i+1} \quad \text{for } k \text{ odd},\]
\[i < (2n + 1 - k)p^{i+1} + (p - 2)p^s \quad \text{for } k \text{ even}.\]

(ii) $\ker(\Omega^k f_s)^* = \ker(\Omega^k p_s)^*$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
For an unstable \mathcal{A} module M, let ΩM denote the algebraic loop functor applied to M, and let $U(M)$ denote the free unstable \mathcal{A}-algebra generated by M. Suppose R is some unstable \mathcal{A}-algebra and suppose in addition that M is a module over $R \otimes \mathcal{A}$, the semitensor product ring. Then $U_R(M)$ denotes the free $R \otimes \mathcal{A}$-algebra generated by M. See [MP1, 2] for precise definitions of these notions.

Suppose we have a fibration $F \rightarrow E \rightarrow B$ which is the pullback, by a map $g : B \rightarrow B_0$, of the path-loop fibration $\Omega B_0 \rightarrow PB_0 \rightarrow B_0$, where B_0 is a generalized Eilenberg-Mac Lane space and $H^*(B_0) = U(Q)$. A basic problem has been to compute $H^*(E)$ in terms of $H^*(B)$ and the map g. Suppose $H^*(B) = U(Y)$ for some unstable projective \mathcal{A} module Y and assume $g^*(Q) \subseteq Y$. Let $R = H^*(B)/\ker p^*$. Thus $H^*(E)$ is an unstable $R \otimes \mathcal{A}$-algebra. In [MP1, MP2, Ba] it is proved that

(i) there is a short exact sequence of $R \otimes \mathcal{A}$-modules

$$0 \rightarrow R \rightarrow N \xrightarrow{\delta} M \rightarrow 0$$

and $H^*(E) \cong U_R(N)$.

(ii) $R \cong U(\coker g^*|_Q)$.

(iii) $M \cong R \otimes \Sigma \Omega(\ker g^*|_Q)$.

It is convenient to modify this as follows:

Letting $Q' = \ker g^*|_Q$, there is an inclusion

$$\Sigma \Omega Q' \rightarrow R \otimes \Sigma \Omega Q'.$$

If G is the submodule of N given by $G = \delta^{-1}(\Sigma \Omega Q')$, then there is a short exact sequence of unstable \mathcal{A}-modules

$$0 \rightarrow R \rightarrow G \rightarrow \Sigma \Omega Q' \rightarrow 0.$$ (2.34)

This is called the fundamental sequence of the fibration (E, p, F). Note that by tensoring with R, (2.33) can be recovered from (2.34) as in §15 of [MP2].

Suppose $\{X_i\}$ is an Adams resolution of a space X, such that $H^*(X) = U(M)$ for some unstable \mathcal{A}-module M. Let

$$M \leftarrow P_0 \xrightarrow{d_0} P_1 \xrightarrow{d_1} P_2 \leftarrow \cdots$$ (2.35)

be a free resolution of M. Thus each P_s is a free unstable \mathcal{A}-module and (2.35) is an acyclic chain complex. Suppose $\{X_s\}$ realizes $\{P_s\}$, i.e., $H^*(F_s) = U(\Omega^s P_s)$ and $F_s \rightarrow X_s \xrightarrow{g_s} BF_{s+1}$ induces in cohomology the differential

$$\Omega^s P_{s+1} \xrightarrow{\partial^s} \Omega^s P_s.$$

Now loop the resolution $\{X_s\}$ k times to obtain a resolution of $\Omega^k X$ in the sense of Definition 2.14. This will not be an Adams resolution in general; however this induces a filtration on $H^*(\Omega^k X)$ given by

$$A_s = \text{im}(H^*(\Omega^k X_s) \xrightarrow{(\Omega^k g)^*} H^*(\Omega^k X)).$$
The main theorem of [HM2] relates the associated graded of this filtration to the homology of the chain complex \(\{ \Omega^k P_s, \Omega^k d_s \} \) as long as \(k \) is not too large. More specifically, for the fibration

\[
\Omega^k F_s \to \Omega^k X_s \xrightarrow{\partial_{s-1}} \Omega^k X_{s-1}
\]

there is a fundamental sequence

\[
0 \to R_{s,k} \to G_{s,k} \to \Omega \ker(\Omega^k g_{s-1})^* \mid \Omega^{k+s-1} P_s \to 0.
\]

The delicate part of [HM2] is the proof that

\[
\ker(\Omega^k g_{s-1})^* \mid \Omega^{k+s-1} P_s = \ker \Omega^{k+s-1} d_{s-1} \quad \forall s \geq 0.
\]

So (2.36) can be written

\[
0 \to R_{s,k} \to G_{s,k} \to \Omega \ker \Omega^{k+s-1} d_{s-1} \to 0.
\]

Since \(\Omega \ker \Omega^{k+s-1} d_{s-1} \to \Omega^{k+s} P_s \) is injective, it follows from (2.37) that there is a diagram in which the rows and columns are exact:

\[
\begin{array}{ccc}
0 & \to & \text{im}(\Omega^k g_s)^* \\
\downarrow & & \downarrow \\
0 & \to & \text{im} \Omega^{k+s} d_s & \to 0
\end{array}
\]

\[
\begin{array}{ccc}
0 & \to & \text{im}(\Omega^k g_s)^* \\
\downarrow & & \downarrow \\
0 & \to & \text{im} \Omega^{k+s} d_s & \to 0
\end{array}
\]

Note that it is exactness of the top row which implies exactness of the bottom row. The inclusion at the left in the bottom row implies that there is an inclusion of algebras

\[
1 \to R_{s,k} \to R_{s+1,k}.
\]

Letting \(\Omega^j \) denote the \(j \)th derived functor of the iterated algebraic loop functor \(\Omega^i \) [Si, Li], the lower right-hand term is identified as \(\Omega \Omega^{s+k-1} M \).

Now let \(X = S^{2n+1}, \) \(k < 2n+1, \) and let \(\{ X_s \} \) be the resolution of [6A]. Since \(H^*(\Omega^k S^{2n+1}) = \lim H^*(\Omega^k X_s), \) Proposition 2.32(ii) follows immediately from (2.39). Using the odd primary version of Singer's sequence (see 4.1 of [Li], 2.3 of [Si]) to compute the connectivity of \(\Omega \Omega^{s+k-1} M, \) Proposition 2.32(i) follows.

We seek a diagram analogous to (2.38) for \(W(n)^* \). The following notation will be convenient: Let \(P_s, P'_s, P''_s \) be such that \(H^*(\Omega^3 BF_{s-1}(S^{2n+1})) = U(P'_s), \) \(H^*(BF_{s}(S^{2n-1})) = U(P''_s), \) and let \(P_s = P'_s \oplus P''_s. \) We have \(d_s : P_{s+1} \to \Omega P_s \) corresponding to the composite

\[
F_s(W(n)) \to X_s(W(n)) \xrightarrow{\partial} BF_{s+1}(W(n))
\]

and by naturality, a short exact sequence of chain complexes:

\[
0 \to P''_s \to P'_s \to P_s \to 0.
\]

The proof of Proposition 2.26 hinges on the following lemma.
Lemma 2.41. \(\ker d_s = \ker g_s|_{P_{s+1}} \).

Proof. This is equivalent to the statement that \(\text{im} g_s^*|_{P_{s+1}} \rightarrow \text{im} d_s \) is injective. This follows by a routine diagram chase in the diagram

\[
\begin{array}{ccc}
0 & \rightarrow & \text{im} g_s''|_{P_{s+1}} \rightarrow \text{im} d_s'' \\
\downarrow & & \downarrow \\
0 & \rightarrow & \text{im} g_s|_{P_{s+1}} \rightarrow \text{im} d_s \\
\downarrow & & \downarrow \\
0 & \rightarrow & \text{im} g_s^*|_{P_{s+1}} \rightarrow \text{im} d_s' \\
\end{array}
\]

It now follows that there is a diagram

\[
\begin{array}{ccc}
0 & \rightarrow & \text{im} g_s^* \rightarrow \text{im} d_s \rightarrow 0 \\
\downarrow & & \downarrow \\
0 & \rightarrow & R_s \rightarrow G_s \rightarrow \Omega \ker d_{s-1} \rightarrow 0 \\
\downarrow & & \downarrow \\
0 & \rightarrow & R_s \rightarrow G_s/\text{im} g_s^* \rightarrow \Omega \ker d_{s-1}/\text{im} d_s \rightarrow 0 \\
\end{array}
\]

where the middle row is the fundamental sequence of the fibration

\[F_s(W(n)) \rightarrow X_s(W(n)) \rightarrow X_{s-1}(W(n)) \]

and all the rows and columns are exact.

Now, as in Proposition 2.32(i), the bottom left inclusion implies an inclusion \(1 \rightarrow R_s \rightarrow R_{s+1} \), which implies Proposition 2.26(i). The connectivity of the quotient \(R_{s+1}/R_s \) is that of \(\Omega \ker d_{s-1}/\text{im} d_s \). To compute this connectivity, dualize, and consider instead the complexes of unstable injective \(\mathcal{A} \)-comodules corresponding to \(S^m \), where \(\mathcal{A} \) is the dual Steenrod algebra. Following Singer [Si2], an explicit construction of this complex is obtained from \(\Lambda(m) \), the result being denoted by \(\mathcal{A} \otimes \Sigma^m \Lambda(m) \). See [BK] for the odd primary case. Also in connection with this see [DM2]. Applying \(\mathcal{A} \otimes (_ _)\) to diagram (2.7) shows that the connectivity of \(H^s(P'/P'') \) is that of \(\Omega \Omega^s M \) where \(M = \tilde{H}^s(S^{2n-1}) \).

Since \(\Lambda(2n + 1) \oplus \Lambda(2n - 1) \) is chain equivalent to \(\Lambda(2n + 1)/\Lambda(2n - 1) \), this is also the connectivity of \(H^s(P_s) \) and Proposition 2.26(i) follows.

Proof of Lemma 2.29. Let \(P^n \) and \(P^{n+1} \) be the chain complexes of free unstable \(\mathcal{A} \)-modules, as in (2.40), corresponding to \(W(n) \) and \(\Omega^{2p} W(n + 1) \) respectively. The map of resolutions \(c' \) corresponds to a chain map

\[P^{n+1} \rightarrow P^n \]

(2.42)

If \(F \) is a generalized Eilenberg-Mac Lane space such that \(H^*(F) = U(P) \), we have \(\text{Hom}_{\mathcal{A}}(P, \mathbb{Z}/p) \cong \pi_*(F) \). Thus the map of \(E_2 \)-terms induced by \(c' \) is obtained by applying \(H_*(\text{Hom}_{\mathcal{A}}(_ _ _ _ , \mathbb{Z}/p)) \) to the chain map in (2.42). We
will show that in homological degree \(s+1 \), \(P^n_{s+1} \) is acyclic in those dimensions in which \(\text{Hom}_{\omega}(P^n_{s+1}, \mathbb{Z}/p) \neq 0 \). Then Lemma 2.29 follows by the standard argument of homological algebra concerning the uniqueness up to chain homotopy of maps from a projective chain complex to an acyclic chain complex. Note that this requires a sharpening of the estimate given in the proof of Theorem 2.27. There we only showed that \(P^n_{s+2} \) is acyclic in dimensions in which \(\text{Hom}_{\omega}(P^n_{s+1}, \mathbb{Z}/p) \neq 0 \).

To obtain this sharpened estimate, since \(\Omega^{2p}W(n+1) \) is a minimal resolution, we need to consider \(H^{s+1,*}(\Lambda(2(n+1)p+1)) \). Order the monomials in \(\Lambda(2(n+1)p+1) \) lexicographically as in [Ta], and let \(\kappa_{i_1} \cdots \kappa_{i_{s+1}} \) be the leading term of a cycle in \(\Lambda(2(n+1)p+1) \). We need a lemma.

Lemma 2.43. If \(\kappa_{i_1} \cdots \kappa_{i_{s+1}} \) is the leading term of a cycle, then \(\kappa_{i_1} \kappa_{i_{s+1}} \) has the form \(\kappa_{i_1} \lambda_{p^i} \) for some \(j \), and \(i \) satisfies \(i \geq 2p^{j-1} \).

Assume Lemma 2.43 for the moment. Write \(n+1 \) uniquely as \(rp^u+k \), where \(1 \leq r \leq p-1 \), and \(k < p^u \). Since \(i_{s+1} = p^j \leq (n+1)p^{s+1} \), we must have \(p^j \leq p^{u+s+1} \). Suppose \(p^j = p^{u+s+1} \). Then the dimension of \(\kappa_{i_1} \cdots \kappa_{i_{s+1}} \) is at most \(q(n+1)(p+p^2+\cdots+p^s)+qp^{u+s+1}+2np-2 \). If \(r \geq 2 \) and \(n \geq 2 \), then this is less than \((2np-3)p^{s+1}+(p-2)p^s \), the dimension of the first nonzero class in \(H^{s+1} (P^n_\star) \).

Now consider the case where \(r = 1 \) and suppose first that \(s+1 \geq 2 \). By Lemma 2.43 we have \(2p^{u+s} \leq i \leq (n+1)p^s \), which is impossible. Hence we must have \(p^j \leq p^{u+s} \). Thus the dimension of \(\kappa_{i_1} \cdots \kappa_{i_{s+1}} \) is at most

\[
q(n+1)(p+\cdots+p^s)+qp^{u+s}+2np-2,
\]

which is less than \((2np-3)p^{s+1}+(p-2)p^s \).

Now, if \(s+1 = 1 \), and \(\kappa_{i_1} = \lambda_{p^i} \), where \(p^j = p^{u+s+1} \), then the dimension of \(\kappa_{i_1} \) is \(qp^{u+s+1}+2np-2 \). This is less than the dimension of the first nonzero class in \(H^1 (P^n_\star) \) if \(k \geq 2 \). If \(k = 0 \), then \(H^* (W(n)) \), and hence \(H^* (P^n_\star) \), is zero in this dimension. Finally, the special case \(n = 1 \) can be handled by the method given in the proof of Theorem 2.27. □

Proof of Lemma 2.43. Under the hypothesis of the lemma, \(\kappa_{i_1} \kappa_{i_{s+1}} \) must be the leading term of a cycle in filtration \(s = 2 \) by 2.3, 2.4 of [HM1]. The homology of \(\Lambda \) is the stable \(E_2 \)-term of the Adams spectral sequence for the sphere, and in filtration \(s = 2 \) this was first computed in [L]. It consists of products \(h_i h_j \), \(i \leq j-2 \), \(a_0 h_j \), \(j > 0 \), elements \(a_0 a_0 \) and \(a_1 \), and Massey products involving the elements \(\{h_i\} \). The element \(\{h_i\} \) has bidegree \((1,qp^i) \) and is represented in \(\Lambda \) by \(\lambda_{p^i} \). Each of the above elements can be easily represented by a cycle in \(\Lambda^{2,*}_\star \) in admissible form, and the desired conclusion is obtained by inspecting the leading terms. The only cycles in \(\Lambda^{2,*}_\star (m) \) which are 0 in \(\Lambda \) are \(d(\kappa) \) for
some $\kappa = \lambda_j$ or μ_j and the leading terms of these satisfy the conclusion as well. □

3. J-HOMOLOGY OF STUNTED LENS SPACES

In this section we recall the basic properties of the spectrum J, the connection between J-homology and v_1-periodic homotopy, and the calculation of the J-homology of stunted lens spaces. Corollary 1.2 will follow immediately from this.

Let ℓ denote a wedge summand of the spectrum representing complex connective K-theory, and consider the Adams operation

$$\psi^k: \ell \to \ell,$$

$k \in \mathbb{Z}$,

where k is a $(p - 1)st$ root of unity mod(p) but not mod(p^2). Then we get

$$(\psi^k - 1): \ell \to \ell.$$ This lifts to a map $(\psi^k - 1): \ell \to \Sigma^q \ell$ and J is defined as the fiber of this lifting. J is a connective spectrum with the following homotopy groups, where $\nu(i)$ is defined by $i = p^{\nu(i)}s$, where p does not divide s:

$$\pi_0J = \mathbb{Z}(p),$$

$$\pi_{q - 1}J = \mathbb{Z}/p^{\nu(i)+1}, \quad i > 0,$$

$$\pi_nJ = 0 \quad \text{if } n \neq 0 \text{ and } n \not\equiv 1 \pmod{q}.$$

The image of the classical J homomorphism is mapped isomorphically onto these groups by the map $S^0 \to J$. See [D] or [R1] for more details concerning the properties of J.

By combining results from [DMM], [R3], and [B] one can prove the following stable result.

Proposition 3.2. Let X be a p-local spectrum. Then there is an isomorphism

$$v_1^{-1}\pi_*(X; \mathbb{Z}/p) \cong v_1^{-1}J_*(X; \mathbb{Z}/p).$$

A version of this is true for $p = 2$ as well and this generalizes Theorem 6.2 of [M1] to an arbitrary spectrum X. Since the J-homology of a spectrum X can be calculated from the ℓ-homology, this gives a convenient way of computing the stable v_1-periodic homotopy groups of X.

Now we compute $J_*(\Sigma_\nu \Sigma_{q_{m-1}}^n)$ where $(\Sigma_\nu \Sigma_{q_{m-1}}^n)$ denotes the qn skeleton of $B\Sigma_{q_{m-1}}^n$ localized at p with the $(q(m - 1))$ skeleton pinched to a point. Thus $(\Sigma_\nu \Sigma_{q_{m-1}}^n)$ is a space with top cell in dimension qn, and bottom cell in dimension $qm - 1$, for $1 \leq m \leq n \leq \infty$. To simplify notation we will denote this complex by $B_{q_{m-1}}^{qn}$, or just B if $n = \infty$ and $m = 1$.

To begin, using the methods of [K] for example, one easily calculates the ℓ-homology of B to obtain

$$\ell_{q-1}(B) = \mathbb{Z}/p^i, \quad \ell_n(B) = 0 \quad \text{if } n \not\equiv 1 \pmod{q}.$$

In [R1] it is shown that the fibration

$$\ell \wedge B \to \Sigma^q \ell \wedge B \to \Sigma J \wedge B$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
induces the following long exact sequence of homotopy groups:

\[0 \to J_{q_{i-1}}(B) \to \ell_{q_{i-1}}(B) \xrightarrow{z_i} \ell_{q_{i-1}}(B) \to J_{q_{i-2}}(B) \to 0 \]

or

\[0 \to J_{q_{i-1}}(B) \to \mathbb{Z}/p^i \xrightarrow{z_i} \mathbb{Z}/p^{i-1} \to J_{q_{i-2}}(B) \to 0. \]

It follows that

\[J_{q_{i-1}}(B) = \mathbb{Z}/p^{\nu(i)+1}, \quad J_{q_{i-2}}(B) = \mathbb{Z}/p^{\nu(i)}, \]

\[J_n(B) = 0 \text{ if } n \not\equiv -1, -2 \mod q. \]

To compute \(J_*(B^q_{m-1}) \) first look at the cofiber sequence

\[B^q \to B^q_{m-1}. \]

The long exact sequence in \(\ell \)-homology gives

\[\ell_{q_{i-1}}(B^{q_{m-1}}) = \mathbb{Z}/p^{i-m+1}, \quad i \geq m, \]

\[\ell_{q_{i-1}}(B^{q_m}) = \mathbb{Z}/p^i, \quad i \leq m, \]

\[\ell_{q_{i-1}}(B^{q_m}) = \mathbb{Z}/p^m, \quad i \geq m. \]

Similarly, we get

\[\ell_{q_{i-1}}(B^n_{q_{m-1}}) = \mathbb{Z}/p^{n-m+1}, \quad i \geq n. \]

So the long exact sequence in homotopy groups applied to the fiber sequence

\[J \wedge B_{q_{n-1}} \to \ell \wedge B_{q_{n-1}} \to \Sigma^q \ell \wedge B_{q_{n-1}} \]

looks like

\[0 \to J_{q_{i-1}}(B_{q_{n-1}}) \to \mathbb{Z}/p^{i-n+1} \times_{\mathbb{Z}/p^{\nu(i)}} \mathbb{Z}/p^{i-n} \to J_{q_{i-2}}(B_{q_{n-1}}) \to 0, \]

which yields

\[J_{q_{i-1}}(B_{q_{n-1}}) = \mathbb{Z}/p^{\min(\nu(i)+1, i-n+1)}, \]

\[J_{q_{i-2}}(B_{q_{n-1}}) = \mathbb{Z}/p^{\min(\nu(i), i-n)}, \]

\[J_k(B_{q_{n-1}}) = 0 \text{ if } k \not\equiv -1, -2 \mod q. \]

Also the long exact sequence in homotopy groups for the fiber sequence

\[J \wedge B_{q_{m-1}}^q \to \ell \wedge B_{q_{m-1}}^q \to \Sigma^q \ell \wedge B_{q_{m-1}}^q \]

yields for \(i > n \)

\[J_{q_{i-1}}(B_{q_{m-1}}^q) = \mathbb{Z}/p^{\min(\nu(i)+1, n-m+1)}, \]

\[J_{q_{i-2}}(B_{q_{m-1}}^q) = \mathbb{Z}/p^{\min(\nu(i)+1, n-m+1)}, \]

\[J_k(B_{q_{m-1}}^q) = 0 \text{ if } k \not\equiv -1, -2 \mod q. \]
To compute $v^{-1}_1 J_*(B^{q_n}; \mathbb{Z}/p)$, first recall that for any spectrum X we have defined $\pi_n(X; \mathbb{Z}/p) = [M^n, X]$ and there is a universal coefficient sequence

$$0 \to \pi_n(X) \otimes \mathbb{Z}/p \to \pi_n(X, \mathbb{Z}/p) \to \text{Tor}(\pi_{n-1}(X), \mathbb{Z}/p) \to 0.$$

It follows immediately that

$$J_{q_i-1}(B^{q_n}; \mathbb{Z}/p) = \mathbb{Z}/p,$$

$$J_{q_i-1}(B^{q_n}; \mathbb{Z}/p) = \mathbb{Z}/p \oplus \mathbb{Z}/p,$$

$$J_{q_i}(B^{q_n}; \mathbb{Z}/p) = \mathbb{Z}/p.$$

To invert v_1, let M denote the mod p Moore spectrum with bottom cell in dimension zero, and observe that by Spanier-Whitehead duality $[M^n, X] \cong [S^n, X \wedge M]$, and v_1 is self dual. The Adams maps $v_1 : M \to \Sigma^{-q} M$ acts on $\mathcal{E}_k(X \wedge M) = \pi_k(\mathcal{E} \wedge X \wedge M)$ by taking a map $S^k \to \mathcal{E} \wedge X \wedge M$ and composing with the map $\mathcal{E} \wedge X \wedge M \xrightarrow{1} \mathcal{E} \wedge X \wedge \Sigma^{-q} M$. Also the generator of $\pi_q(\mathcal{E})$, which we have denoted by v_1, acts on $\pi_k(\mathcal{E} \wedge X \wedge M)$ by taking a map $S^k \to \mathcal{E} \wedge X \wedge M$, smashing it with $S^q \to \mathcal{E}$ to get a map $S^{k+q} \to \mathcal{E} \wedge \mathcal{E} \wedge X \wedge M$, then composing with the ring spectrum multiplication map $\mathcal{E} \wedge \mathcal{E} \to \mathcal{E}$ smashed with $X \wedge M$. In [DM] it is proved that these two actions coincide. The latter action of v_1 on $\mathcal{E}_k(X)$ coincides on the Adams E_2-level to the action of an element $b \in \text{Ext}^{1,q+1}_{E(Q_0,Q_1)}(\mathbb{Z}/p, \mathbb{Z}/p)$ on $\text{Ext}^{5,5}_{E(Q_0,Q_1)}(H^*(X), \mathbb{Z}/p)$.

So, in $J_*(B^{q_n}; \mathbb{Z}/p)$, the v_1 action on the elements which map nontrivially into $\mathcal{E}_k(B^{q_n}; \mathbb{Z}/p)$ can be read off in $\text{Ext}^{5,5}_{E(Q_0,Q_1)}(H^*(B^{q_n}) \otimes E(Q_0), \mathbb{Z}/p)$ and the v_1 action of the elements in $J_*(B^{q_n}; \mathbb{Z}/p)$ which are in the image of $\mathcal{E}_{-(q-1)}(B^{q_n}; \mathbb{Z}/p)$ can be read off from $\text{Ext}^{5,5-(q-1)}_{E(Q_0,Q_1)}(H^*(B^{q_n}) \otimes E(Q_0), \mathbb{Z}/p)$. The result is

Proposition 3.9. $v^{-1}_1 J_*(B^{q_n}; \mathbb{Z}/p)$ is isomorphic to a free module over $\mathbb{Z}/p[v_1, v_1^{-1}]$ on four generators in dimensions $qn-2$, $qn-1$, $qn-1$, qn.

Combining this with Proposition 3.2 and Theorem 1.1 we get Corollary 1.2.

4. The proof of Theorem 1.3

In order to prove Theorem 1.3 we will need two results. The first result is known as the odd primary vector field theorem.

Proposition 4.1. (a) There exists a map

$$a_k : S^{q_k-1} \to B_{q(k-\nu(k)-1)}$$

with the following properties:

(i) a_k is nontrivial in mod p homology, and

(ii) $S^{q_k-1} \xrightarrow{a_k} B_{q(k-\nu(k)-1)} \to B_{q(k-\nu(k)-1)} \wedge \mathcal{E}$ represents a generator of $\mathcal{E}_{q_k-1}(B_{q(k-\nu(k)-1)})$. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(b) There does not exist a map $S^{q(k-1)} \to B_q(k-\nu(k)-1)-1$ nontrivial in mod p homology.

A proof of part (i) can be found in, for example, [D], and is based on the fact that the Thom complex of the canonical complex line bundle over a skeleton of $B\Sigma_p$ is a stunted B^n_m. The second part of (a) follows immediately from part (i). Part (b) is originally due to Toda. An elegant proof can be made using the Adams operations ψ^k in ℓ-theory, based on the proof of the $p = 2$ version given in [MM]. We will only make use of part (a).

The second result concerns the properties of the map $P : B\Sigma_p \to B\Sigma_p$ which is the identity on $B\Sigma_p$ smashed with the degree p map on the sphere. If we view $B\Sigma_p$ as a space rather than a spectrum, then P can be defined after just one suspension, and the following proposition holds true after two suspensions. Let $c : B_{nq-1} \to B_{(n+1)q-1}$ denote collapse, $i : B^n_q \to B^{q(n+1)}$ denote inclusion.

Proposition 4.2. (a) For $n \geq 1$, there exists a map $\phi_n : B_{(n+1)q-1} \to B_{nq-1}$ with the following properties:

(i) ϕ_n extends multiplication by p, i.e.,

\[
\begin{array}{ccc}
B_{nq-1} & \xrightarrow{p} & B_{nq-1} \\
\downarrow c & & \downarrow \phi_n \\
B_{(n+1)q-1} & \xrightarrow{=} & B_{(n+1)q-1}
\end{array}
\]

commutes.

(ii) ϕ_n has positive Adams filtration; i.e., ϕ_n is 0 in mod p homology.

(iii) ϕ_n induces an isomorphism in K-theory and multiplication by p in ℓ-theory.

(b) For $1 \leq m \leq n$, there exists a map

$\phi_m^n : B_{q(m+1)-1}^{q(n+1)} \to B_{qm-1}^{q(n+1)}$

with the following properties:

(i) The following diagram commutes:

\[
\begin{array}{ccc}
B_{q^{m-1}} & \xrightarrow{p} & B_{q^{m-1}} \\
\downarrow i & & \downarrow \phi_m^n \\
B_{q^{(m+1)-1}} & \xrightarrow{c} & B_{q^{(m+1)-1}}
\end{array}
\]

(ii) ϕ_m^n has positive Adams filtration.

(iii) ϕ_m^n induces an isomorphism in K-theory.

(iv) ϕ_m^n induces an isomorphism in ℓ-theory in dimensions $\geq q(n+1) - 1$ and multiplication by p in dimensions $< q(n+1) - 1$.

Proof of Proposition 4.2. ϕ_n is just the usual extension over the cofiber which exists because the composite $\Sigma M_{nq-1}^{nq} \xrightarrow{i} \Sigma B_{nq-1} \xrightarrow{p} \Sigma B_{nq-1}$ is null homotopic.
Properties (ii) and (iii) are readily checked by applying $H^*(\cdot)$, $\zeta_\ast(\cdot)$, and $K_\ast(\cdot)$ to diagram (4.3).

Since the composite $\Sigma B_{q m-1}^{q(n+1)} \xrightarrow{p} \Sigma B_{q m-1}^{q(n+1)} \xrightarrow{\zeta} \Sigma^2 B_{q m-1}^{q(n+1)}$ is null, there exists a colifting $\Sigma^2 B_{q m-1}^{q(n+1)} \xrightarrow{f} \Sigma^2 B_{q m-1}^{q(n+1)}$. The composite

$$\Sigma^2 M_{q m} \xrightarrow{i} \Sigma B_{q m-1}^{q(n+1)} \xrightarrow{f} \Sigma^2 B_{q m-1}^{q(n+1)} \xrightarrow{i} \Sigma B_{q m-1}^{q(n+1)}$$

is null since $i \circ f = p$. But $i: \Sigma^2 B_{q m-1}^{q(n+1)} \rightarrow \Sigma^2 B_{q m-1}^{q(n+1)}$ is $q(n+1) - 1$-connected so

$$f \circ i: \Sigma^2 M_{q m} \rightarrow \Sigma^2 B_{q m-1}^{q(n+1)} \xrightarrow{f} \Sigma B_{q m-1}^{q(n+1)}$$

is null. Thus there exists an extension over the cofiber $\Sigma^2 B_{q(m+1)}^{q(n+1)} \rightarrow \Sigma B_{q m-1}^{q(n+1)}$ and this is our map ϕ^n_m. Again properties (b)(ii)-(iv) are readily checked.

We now prove a stable version of Theorem 1.3. For any space or spectrum X there is a Hurewicz homomorphism induced by $S^0 \rightarrow J$.

Proposition 4.5. The Hurewicz homomorphism

$$\pi_{q k-1}(B_{n q-1}) \rightarrow J_{q k-1}(B_{n q-1})$$

is surjective for all $n \geq 1$, $k \geq 1$.

Proof. Consider the composite map of spectra

$$B_{n q-1} \rightarrow B_{n q-1} \wedge J \rightarrow B_{n q-1} \wedge \ell' .$$

First assume $\nu(k) + 1 \geq k - n + 1$. By (3.5) and (3.7) the second map induces an isomorphism in homotopy, so it suffices to find an element in $\pi_{q k-1}(B_{n q-1})$ which maps to a generator of $J_{q k-1}(B_{n q-1})$. The vector field theorem says there is a map $a_k: S^{q k-1} \rightarrow B_{q(k-\nu(k)-1)}$.

Since $n > k - \nu(k) - 1$ we can compose a_k with the collapse map $B_{q(k-\nu(k)-1)} \xrightarrow{\zeta} B_{n q-1}$ to get a map with the desired properties.

Now assume $\nu(k) + 1 < k - n + 1$. In this case (3.5) and (3.7) show that the second map induces multiplication by $p^{k-n-\nu(k)}$ from $\mathbb{Z}/p^{\nu(k)+1}$ to \mathbb{Z}/p^{k-n+1}. So we need an element of $\pi_{q k-1}(B_{n q-1})$ which maps $p^{k-n-\nu(k)}$ times the generator of $J_{q k-1}(B_{n q-1})$. We use the composite

$$\phi_n \circ a_{n+1} \circ \cdots \circ \phi_{k-\nu(k)-2}: B_{q(k-\nu(k)-1)} \rightarrow B_{n q-1} .$$

Again the vector field theorem gives $a_k: S^{q k-1} \rightarrow B_{q(k-\nu(k)-1)}$ and the composite

$$\phi_n \circ \cdots \circ \phi_{k-\nu(k)-2} \circ a_k: S^{q k-1} \rightarrow B_{n q-1}$$

has the right properties since ϕ_i induces multiplication by p in ℓ_\ast-theory.

From this we get another stable result.
Proposition 4.6. The Hurewicz map $\pi_{qq-1}(B^{(n+j)q}_{q+1}) \rightarrow J_{qq-1}(B^{(n+j)q}_{q+1})$ is surjective for all $k \geq 1$, $n \geq 1$ and $j \geq 0$. If $n \geq 1$, $j \geq 0$ and $k \geq n+j+1+\nu(k)$, then

$$\pi_{qq-2}(B^{(n+j)q}_{q+1}) \rightarrow J_{qq-2}(B^{(n+j)q}_{q+1})$$

is surjective.

Before giving the proof we state a lemma.

Lemma 4.7. $\pi_{qq-1}(B_{qq})$ has no elements of Adams filtration greater than $k - n$.

Proof of Lemma 4.7. This follows immediately from Theorem 1 of [L] since $H^*(B_{qq})$ is $E(Q_0)$ free.

Proof of Proposition 4.6. Consider the cofiber sequence of spectra

$$B^{(n+j)q}_{q+1} \rightarrow B^{(n+j)q}_{q+1} \rightarrow B^{(n+j+1)q}_{q+1}. \tag{4.8}$$

By Proposition 4.5 there is an element $\alpha \in \pi_{qq-1}(B^{(n+j+1)q}_{q+1})$ of Adams filtration $\max(0, k - j - \nu(k) - 1)$ which maps to a generator of $J_{qq-1}(B^{(n+j+1)q}_{q+1})$. If $\nu(k) < n$ then α maps to $\pi_{qq-1}(B^{(n+j+1)q}_{q+1})$ above the vanishing line of Lemma 4.7; hence α must lift to an element in $\pi_{qq-1}(B^{(n+j+1)q}_{q+1})$ as required. If $\nu(k) \geq n$, then $p^b \cdot \alpha$, where $b = (k - n - j) - \text{Adams filtration}(\alpha)$, maps to an element above the vanishing line, hence lifts to yield the desired element.

For the second assertion of Proposition 4.6, consider the boundary map in the long exact sequence obtained by applying J_\bullet to (4.8). If $k \geq n+j+\nu(k)+1$, then this boundary map

$$J_{qq-1}(B^{(n+j+1)q}_{q+1}) \rightarrow J_{qq-2}(B^{(n+j)q}_{q+1})$$

is surjective, and since

$$\pi_{qq-1}(B^{(n+j+1)q}_{q+1}) \rightarrow J_{qq-1}(B^{(n+j+1)q}_{q+1})$$

is surjective as well by Proposition 4.5, we have that

$$\pi_{qq-2}(B^{(n+j)q}_{q+1}) \rightarrow J_{qq-2}(B^{(n+j)q}_{q+1})$$

is surjective.

We are now ready to finish the proof of Theorem 1.3.

Proof of Theorem 1.3. Consider the composite map of spaces $B^{qn} \rightarrow \Omega^{2n+1}S^{2n+1} \rightarrow Q(B^{qn})$ where the map on the left is the Dyer-Lashof map and the map on the right is the Hopf-James map. The composite is just the natural inclusion. The map on the left extends to a map

$$\Omega^{2n+1} \Sigma^{2n+1}B^{qn} \mu \rightarrow \Omega^{2n+1}S^{2n+1} \rightarrow Q(B^{qn}).$$
Fix $qk - 1$. By the Freudenthal suspension theorem for the prime p any map $S^{qk-1} \to Q(B_{(j+1)q}^{(j+n)q})$ factors through $\Omega^{2n+1} \Sigma^{2n+1} (B_{(j+1)q}^{(j+n)q})$ if

$$2n + qk < p[2n + (j + 1)q] - 1. \tag{4.9}$$

Furthermore, the stable map

$$Q(\phi_1 \circ \cdots \circ \phi_j^{j+n-1}): QB_{(j+1)q}^{(j+n)q} \to QB^{qn}$$

induces an isomorphism in $J_{qk-1}(\)$ if

$$qk - 1 > (j + n)q. \tag{4.10}$$

Given the integer k, we must find a j which simultaneously satisfies (4.9) and (4.10). This amounts to finding an integer j such that $(k - n)/p - 1 < j < k - n$ which we can always do. Thus we apply Proposition 4.6 to get a map

$$S^{qk-1} \to \Omega^{2n+1} \Sigma^{2n+1} B_{(j+1)q}^{(j+n)q},$$

which we then compose with $\mu \circ \Omega^{2n+1} \Sigma^{2n+1} (\phi_j^{j+n-1} \circ \cdots \circ \phi_1^n)$ to get an element in $\pi_{qk-1}(\Omega^{2n+1} \Sigma^{2n+1})$ which maps to a generator of $J_{qk-1}(B^{qn})$, proving the first part of Theorem 1.3.

To prove the second part consider the composite

$$\Omega^{2n+1} \Sigma^{2n+1} B_{(j+1)q}^{(n+j)q} \to \Omega^{2n+1} \Sigma^{2n+1} B^{qn} \to \Omega^{2n+1} \Sigma^{2n+1} \to QB^{qn}.$$

By Proposition 4.6, there is an element $\alpha: S^{qk-2} \to Q(B_{(j+1)q}^{(n+j)q})$ whose Hurewicz image is a generator if

$$k \geq n + j + 1 + \nu(k). \tag{4.11}$$

Consider the diagram

$$\begin{array}{ccc}
S^{qk-1} & \xrightarrow{\alpha} & QB_{(n+j+1)q}^{(n+j+1)q} \\
\alpha & & \downarrow \\
\Omega^{2n} \Sigma^{2n} B_{(n+j+1)q}^{(n+j+1)q} & \xrightarrow{\partial} & \Omega^{2n} \Sigma^{2n+1} B_{(j+1)q}^{(j+n)q} \\
\end{array}$$

and recall from the proof of Proposition 4.6 that α is obtained as the composite of the bottom row for some map $\tilde{\alpha}$. If $\tilde{\alpha}$ has a lifting $\hat{\alpha}$ then the adjoint of $\partial \circ \hat{\alpha}$ would yield an element in $\pi_{qk-2}(\Omega^{2n+1} \Sigma^{2n+1})$ which would then map to the generator of $J_{qk-2}(B^{qn})$. But $\hat{\alpha}$ will be in the range to have such a lifting if

$$qk - 1 + 2n < p[2n + (n + j + 1)q] - 1 - 1 \tag{4.12}$$

or equivalently,

$$qk < (2p^2 - 2)n + pq(j + 1) - p. \tag{4.13}$$

After a little arithmetic, one sees that given k such that $k \geq 1 + n + \nu(k)$ as in the hypothesis, it is possible to find a j simultaneously satisfying (4.11) and (4.13) which completes the proof of the second part of Theorem 1.3.
Bibliography

[R2] ——, *Streamlining the EHP sequence by excluding v_1-periodicity* (to appear).

Department of Mathematics, Northwestern University, Evanston, Illinois 60208