Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Minimal identities of symmetric matrices


Authors: Wen Xin Ma and Michel L. Racine
Journal: Trans. Amer. Math. Soc. 320 (1990), 171-192
MSC: Primary 16A38; Secondary 17C05
DOI: https://doi.org/10.1090/S0002-9947-1990-0961598-6
MathSciNet review: 961598
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {H_n}(F)$ denote the subspace of symmetric matrices of $ {M_n}(F)$, the full matrix algebra with coefficients in a field $ F$. The subspace $ {H_n}(F)\subset {M_n}(F)$ does not have any polynomial identity of degree less than $ 2n$. Let

$\displaystyle T_k^i({x_1}, \ldots ,{x_k}) = \sum\limits_{\begin{array}{*{20}{c}... ... {{{( - 1)}^\sigma }{x_{\sigma (1)}}} {x_{\sigma (2)}} \cdots {x_{\sigma (k)}},$

, and $ e(n) = n$ if $ n$ is even, $ n + 1$ if $ n$ is odd. For all $ n \geq 1,T_{2n}^i$ is an identity of $ {H_n}(F)$. If the characteristic of $ F$ does not divide $ e(n)!$ and if $ n \ne 3$, then any homogeneous polynomial identity of $ {H_n}(F)$ of degree $ 2n$ is a consequence of $ T_{2n}^i$. The case $ n = 3$ is also dealt with. The proofs are algebraic, but an equivalent formulation of the first result in graph-theoretical terms is given.

References [Enhancements On Off] (What's this?)

  • [1] A. S. Amitsur and J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950), 449-463. MR 0036751 (12:155d)
  • [2] Claude Berge, Graphes et hypergraphes, Dunod, Paris, 1970. MR 0357173 (50:9641)
  • [3] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., vol. 39, Amer. Math. Soc., Providence, R.I., 1968. MR 0251099 (40:4330)
  • [4] J. Marshall Osborn, Identities of non-associative algebras, Canad. J. Math. 17 (1965), 78-92. MR 0179221 (31:3470)
  • [5] Y. P. Razmyslov, Finite basing of the identities of a matrix algebra of second order over a field of characteristic 0, Algebra i Logika 12 (1973), 47-63.
  • [6] -, Trace identities of full matrix algebras over a field of characteristic zero, Math. USSR-Izv. 8 (1974), 727-760.
  • [7] L. H. Rowen, Polynomial identities in ring theory, Academic Press, 1980. MR 576061 (82a:16021)
  • [8] -, A simple proof of Kostant's theorem and an analogue for the symplectic involution, Contemp. Math., vol. 13, Amer. Math. Soc., Providence, R.I., 1982, pp. 207-215.
  • [9] A. M. Slin'ko, Special varieties of Jordan algebras, Mat. Zametki 26 (1979), 337-344. MR 549275 (81c:17002)
  • [10] B. D. Smith, A standard Jordan polynomial, Comm. Algebra 5 (1977), 207-218. MR 0430012 (55:3020)
  • [11] Richard G. Swan, An application of graph theory to algebra, Proc. Amer. Math. Soc. 14 (1963), 367-373; Correction, Proc. Amer. Math. Soc. 21 (1969), 379-380. MR 0149468 (26:6956)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A38, 17C05

Retrieve articles in all journals with MSC: 16A38, 17C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0961598-6
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society