Minimal identities of symmetric matrices

Authors:
Wen Xin Ma and Michel L. Racine

Journal:
Trans. Amer. Math. Soc. **320** (1990), 171-192

MSC:
Primary 16A38; Secondary 17C05

DOI:
https://doi.org/10.1090/S0002-9947-1990-0961598-6

MathSciNet review:
961598

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the subspace of symmetric matrices of , the full matrix algebra with coefficients in a field . The subspace does not have any polynomial identity of degree less than . Let

**[1]**A. S. Amitsur and J. Levitzki,*Minimal identities for algebras*, Proc. Amer. Math. Soc.**1**(1950), 449–463. MR**0036751**, https://doi.org/10.1090/S0002-9939-1950-0036751-9**[2]**Claude Berge,*Graphes et hypergraphes*, Dunod, Paris, 1970 (French). Monographies Universitaires de Mathématiques, No. 37. MR**0357173****[3]**Nathan Jacobson,*Structure and representations of Jordan algebras*, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR**0251099****[4]**J. Marshall Osborn,*Identities of non-associative algebras*, Canad. J. Math.**17**(1965), 78–92. MR**0179221**, https://doi.org/10.4153/CJM-1965-008-3**[5]**Y. P. Razmyslov,*Finite basing of the identities of a matrix algebra of second order over a field of characteristic 0*, Algebra i Logika**12**(1973), 47-63.**[6]**-,*Trace identities of full matrix algebras over a field of characteristic zero*, Math. USSR-Izv.**8**(1974), 727-760.**[7]**Louis Halle Rowen,*Polynomial identities in ring theory*, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR**576061****[8]**-,*A simple proof of Kostant's theorem and an analogue for the symplectic involution*, Contemp. Math., vol. 13, Amer. Math. Soc., Providence, R.I., 1982, pp. 207-215.**[9]**A. M. Slin′ko,*Special varieties of Jordan algebras*, Mat. Zametki**26**(1979), no. 3, 337–344, 492 (Russian). MR**549275****[10]**Bruce D. Smith,*A standard Jordan polynomial*, Comm. Algebra**5**(1977), no. 2, 207–218. MR**0430012**, https://doi.org/10.1080/00927877708822165**[11]**Richard G. Swan,*An application of graph theory to algebra*, Proc. Amer. Math. Soc.**14**(1963), 367–373. MR**0149468**, https://doi.org/10.1090/S0002-9939-1963-0149468-6

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
16A38,
17C05

Retrieve articles in all journals with MSC: 16A38, 17C05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-0961598-6

Article copyright:
© Copyright 1990
American Mathematical Society