Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weight strings in nonstandard representations of Kac-Moody algebras


Author: Meighan I. Dillon
Journal: Trans. Amer. Math. Soc. 320 (1990), 161-169
MSC: Primary 17B67; Secondary 17B05, 17B10, 17B20
DOI: https://doi.org/10.1090/S0002-9947-1990-0964898-9
MathSciNet review: 964898
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the weights which occur in arbitrary irreducible highest weight representations of Kac-Moody algebras and determine conditions under which certain weights may or may not occur.


References [Enhancements On Off] (What's this?)

  • [1] I. B. Frenkel, Representations of Kac-Moody algebras and dual resonance models, Lectures in Appl. Math., vol. 21, Amer. Math. Soc., Providence, R.I., 1985, pp. 325-353. MR 789298 (87b:17010)
  • [2] -, Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory, J. Funct. Anal. 44 (1981), 259-327. MR 643037 (83b:17012)
  • [3] I. B. Frenkel and V. G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980), 23-66. MR 595581 (84f:17004)
  • [4] J. Humphreys, Introduction to Lie algebras and representation theory, 2nd ed., Springer-Verlag, Berlin, Heidelberg and New York, 1972. MR 0323842 (48:2197)
  • [5] N. Jacobson, Lie algebras, Interscience, New York, 1962. MR 0143793 (26:1345)
  • [6] V. G. Kac, Infinite dimensional Lie algebras, Birkhäuser, Boston, Mass., 1983. MR 739850 (86h:17015)
  • [7] -, Simple irreducible graded Lie algebras of finite growth, Math. USSR-Izv. 2 (1968), 1271-1311.
  • [8] V. G. Kac, D. A. Kazhdan, J. Lepowsky and R. L. Wilson, Realizations of the basic representations of the Euclidean Lie algebras, Adv. in Math. 42 (1981), 83-112. MR 633784 (83a:17016)
  • [9] V. G. Kac and D. H. Peterson, Infinite dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), 125-264. MR 750341 (86a:17007)
  • [10] J. Lepowsky, Some constructions of the affine Lie algebra $ A_1^{(1)}$, Lectures in Appl. Math., vol. 21, Amer. Math. Soc., Providence, R. I., 1985, pp. 375-397. MR 789300 (86m:17021)
  • [11] -, Lectures on Kac-Moody algebras, Université Paris VI, spring 1978.
  • [12] D. Mitzman, Integral bases for affine Lie algebras and their universal enveloping algebras, Contemp. Math., vol. 40, Amer. Math. Soc., Providence, R.I., 1985. MR 786830 (86h:17022)
  • [13] R. V. Moody, Euclidean Lie algebras, Canad. J. Math. 21 (1969), 1432-1454. MR 0255627 (41:287)
  • [14] -, Lie algebras associated with generalized Cartan matrices, Bull. Amer. Math. Soc. 73 (1967), 217-221. MR 0207783 (34:7598)
  • [15] -, A new class of Lie algebras, J. Algebra 10 (1968), 211-230. MR 0229687 (37:5261)
  • [16] R. Steinberg, Lectures on Chevalley groups, Yale Univ. lecture notes, 1967. MR 0466335 (57:6215)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B67, 17B05, 17B10, 17B20

Retrieve articles in all journals with MSC: 17B67, 17B05, 17B10, 17B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0964898-9
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society