Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The Schrödinger equation with a quasi-periodic potential
HTML articles powered by AMS MathViewer

by Steve Surace PDF
Trans. Amer. Math. Soc. 320 (1990), 321-370 Request permission

Abstract:

We consider the Schràdinger equation \[ - \frac {{{d^2}}} {{d{x^2}}}\psi + \varepsilon (\cos x + \cos (\alpha x + \vartheta ))\psi = E\psi \] where $\varepsilon$ is small and $\sigma$ satisfies the Diophantine inequality \[ |p + q\alpha | \geq C/{q^2}{\text {for}}p{\text {,}}q \in {\mathbf {Z}},q \ne 0.\]. We look for solutions of the form \[ \psi (x) = {e^{iKx}}q(x) = {e^{iKx}}\sum {{\psi _{mn}}{e^{inx}}} {e^{im(\alpha x + \vartheta )}}\]. If we try to solve for $\psi = {\psi _{mn}}$ we are led to the Schràdinger equation on the lattice ${{\mathbf {Z}}^2}$ \[ H(K)\psi = (\varepsilon \Delta + V(K))\psi = E\psi \] where $\Delta$ is the discrete Laplacian (without diagonal terms) and $V(K)$ is some potential on ${{\mathbf {Z}}^2}$ . We have two main results: (1) For $\varepsilon$ sufficiently small, $H(K)$ has pure point spectrum for almost every $K$. (2) For $\varepsilon$ sufficiently small, the operator \[ - {d^2}/d{x^2} + \varepsilon (\cos x + \cos (\alpha x + \vartheta ))\] has no point spectrum. To prove our results, we must get decay estimates on the Green’s function ${(E - H)^{ - 1}}$. The decay of the eigenfunction follows from this. In general, we must keep track of small divisors which can make the Green’s function large. This is accomplished by a KAM (Kolmogorov, Arnold, Moser) type of multiscale perturbation analysis.
References
    J. M. Berezanskii, Expansion in eigenfunctions of self adjoint operators, Transl. Math. Monographs, vol. 17, Amer. Math. Soc., Providence, R.I., 1968. F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern, Z. Phys. 52 (1928), 555.
  • François Delyon, Yves Lévy, and Bernard Souillard, Anderson localization for multidimensional systems at large disorder or large energy, Comm. Math. Phys. 100 (1985), no. 4, 463–470. MR 806247, DOI 10.1007/BF01217724
  • E. I. Dinaburg and Ya. G. Sinai, The one-dimensional Schràdinger equation with a quasiperiodic potential, Functional Anal. Appl. 9 (1975), 279.
  • Jürg Fröhlich and Thomas Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Comm. Math. Phys. 88 (1983), no. 2, 151–184. MR 696803, DOI 10.1007/BF01209475
  • J. Fröhlich, F. Martinelli, E. Scoppola, and T. Spencer, Constructive proof of localization in the Anderson tight binding model, Comm. Math. Phys. 101 (1985), no. 1, 21–46. MR 814541, DOI 10.1007/BF01212355
  • Giovanni Gallavotti, The elements of mechanics, Texts and Monographs in Physics, Springer-Verlag, New York, 1983. Translated from the Italian. MR 698947, DOI 10.1007/978-3-662-00731-0
  • I. Gold’sheid, S. Molchanov, and L. Pastur, Pure point spectrum of stochastic one-dimensional Schràdinger operators, Functional Anal. Appl. 11 (1977), 1.
  • R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys. 84 (1982), no. 3, 403–438. MR 667409, DOI 10.1007/BF01208484
  • Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
  • Jürgen Moser and Jürgen Pöschel, An extension of a result by Dinaburg and Sinaĭ on quasiperiodic potentials, Comment. Math. Helv. 59 (1984), no. 1, 39–85. MR 743943, DOI 10.1007/BF02566337
  • Barry Simon, Almost periodic Schrödinger operators: a review, Adv. in Appl. Math. 3 (1982), no. 4, 463–490. MR 682631, DOI 10.1016/S0196-8858(82)80018-3
  • Barry Simon and Tom Wolff, Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians, Comm. Pure Appl. Math. 39 (1986), no. 1, 75–90. MR 820340, DOI 10.1002/cpa.3160390105
  • Ya. G. Sinaĭ, Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Statist. Phys. 46 (1987), no. 5-6, 861–909. MR 893122, DOI 10.1007/BF01011146
  • T. Spencer, The Schràdinger equation with a random potential: a mathematical review, Lecture Notes, Les Houches Summer School, 1984. T. Spencer, J. Fràhlich, and P. Wittwer, Localization for a class of one dimensional quasiperiodic Schràdinger operators, preprint, 1987.
  • E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. Part I, 2nd ed., Clarendon Press, Oxford, 1962. MR 0176151
  • Serge Aubry and Gilles André, Analyticity breaking and Anderson localization in incommensurate lattices, Group theoretical methods in physics (Proc. Eighth Internat. Colloq., Kiryat Anavim, 1979) Ann. Israel Phys. Soc., vol. 3, Hilger, Bristol, 1980, pp. 133–164. MR 626837
  • Serge Aubry, The new concept of transitions by breaking of analyticity in a crystallographic model, Solitons and condensed matter physics (Proc. Sympos. Nonlinear (Soliton) Structure and Dynamics in Condensed Matter, Oxford, 1978) Springer Ser. Solid-State Sci., vol. 8, Springer, Berlin-New York, 1978, pp. 264–277. MR 522493
  • François Delyon, Absence of localisation in the almost Mathieu equation, J. Phys. A 20 (1987), no. 1, L21–L23. MR 873175
  • P. Lax, Lecture notes on Hilbert space, New York Univ., 1970.
Similar Articles
Additional Information
  • © Copyright 1990 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 320 (1990), 321-370
  • MSC: Primary 34B25; Secondary 47E05, 81C05, 82A42
  • DOI: https://doi.org/10.1090/S0002-9947-1990-0998358-6
  • MathSciNet review: 998358