Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Discontinuous ``viscosity'' solutions of a degenerate parabolic equation


Authors: Michiel Bertsch, Roberta Dal Passo and Maura Ughi
Journal: Trans. Amer. Math. Soc. 320 (1990), 779-798
MSC: Primary 35K55; Secondary 35Bxx
DOI: https://doi.org/10.1090/S0002-9947-1990-0965742-6
MathSciNet review: 965742
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study a nonlinear degenerate parabolic equation of the second order. Regularizing the equation by adding some artificial viscosity, we construct a generalized solution. We show that this solution is not necessarily continuous at all points.


References [Enhancements On Off] (What's this?)

  • [1] M. Bertsch, R. Dal Passo, and M. Ughi, Nonuniqueness of solutions of a degenerate parabolic equation, Ann. Mat. Pura Appl. (to appear). MR 1174811 (93f:35124)
  • [2] M. Bertsch and M. Ughi, Positivity properties of viscosity solutions of a degenerate parabolic equation, J. Nonlinear Anal. TMA (in press). MR 1044287 (92a:35006)
  • [3] M. G. Crandall, L. C. Evans, and P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), 487-502. MR 732102 (86a:35031)
  • [4] E. Di Benedetto, Continuity of weak solutions to a general porous media equation, Indiana Univ. Math. J. 32 (1983), 83-118. MR 684758 (85c:35010)
  • [5] R. Dal Passo and S. Luckhaus, On a degenerate diffusion problem not in divergence form, J. Differential Equations 69 (1987), 1-14. MR 897437 (88k:35091)
  • [6] B. H. Gilding, Hölder continuity of solutions of parabolic equations, J. London Math. Soc. 13 (1976), 103-106. MR 0399658 (53:3501)
  • [7] P. L. Lions, Optimal control of diffusion process and Hamilton-Jacobi-Bellman equations, part $ 2$: viscosity solutions and uniqueness, Comm. Partial Differential Equations 8 (1983), 1229-1276. MR 709162 (85i:49043b)
  • [8] M. Ughi, A degenerate parabolic equation modelling the spread of an epidemic, Ann. Mat. Pura Appl. 143 (1986), 385-400. MR 859613 (88g:35105)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35K55, 35Bxx

Retrieve articles in all journals with MSC: 35K55, 35Bxx


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0965742-6
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society