The Dirichlet problem for radially homogeneous elliptic operators

Author:
Richard F. Bass

Journal:
Trans. Amer. Math. Soc. **320** (1990), 593-614

MSC:
Primary 35J25; Secondary 35B50, 60J60

DOI:
https://doi.org/10.1090/S0002-9947-1990-0968415-9

MathSciNet review:
968415

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Dirichlet problem in the unit ball is considered for the strictly elliptic operator , where the , are smooth away from the origin and radially homogeneous: . Existence and uniqueness are proved for solutions in a certain space of functions. Necessary and sufficient conditions are given for an extended maximum principle to hold.

**[1]**R. F. Bass and E. Pardoux,*Uniqueness for diffusions with piecewise constant coefficients*, Probability Theory and Related Fields**76**(1987), 557-572. MR**917679 (89b:60183)****[2]**J. R. Baxter and G. A. Brosamler,*Energy and the law of the iterated logarithm*, Math. Scand.**38**(1976), 115-136. MR**0426178 (54:14124)****[3]**R. N. Bhattacharya,*On the functional central limit theorem and the law of the iterated logarithm for Markov processes*, Z. Wahrsch. Verw. Gebiete**60**(1982), 185-201. MR**663900 (83h:60072)****[4]**D. Gilbarg and J. Serrin,*On isolated singularities of solutions of second order elliptic differential equations*, J. Analyse Math.**4**(1955/56), 309-340. MR**0081416 (18:399a)****[5]**D. Gilbarg and N. S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Springer, New York, 1983. MR**737190 (86c:35035)****[6]**M. G. Krein and M. A. Rutman,*Linear operators leaving invariant a cone in a Banach space*, Amer. Math. Soc. Transl.**10**(1962), 199-325. MR**0038008 (12:341b)****[7]**N. V. Krylov,*An inequality in the theory of stochastic integrals*, Theory Probab. Appl.**16**(1971), 438-448. MR**0298792 (45:7841)****[8]**N. V. Krylov and M. V. Safonov,*An estimate of the probability that a diffusion process hits a set of positive measure*, Soviet Math. Dokl.**20**(1979), 253-255.**[9]**-,*A certain property of solutions of parabolic equation with measurable coefficients*, Math. USSR-Izv.**16**(1981), 151-235.**[10]**L. Lamberti and P. Manselli,*Existence-uniqueness theorems and counterexamples for an axially symmetric elliptic operator*, Boll. Un. Ital. B**2**(1983), 431-443. MR**716741 (85f:35068)****[11]**C. Pucci,*Limitazioni per soluzioni di equazioni ellittiche*, Ann. Mat. Pura Appl. (4)**74**(1966), 15-30. MR**0214905 (35:5752)****[12]**M. V. Safonov,*Unimprovability of estimates of Hölder continuity for solution to linear elliptic equations with measurable coefficients*, Mat. Sb.**132**(**174**) (1987), 275-288. (Russian) MR**882838 (88e:35049)****[13]**D. W. Stroock and S. R. S. Varadhan,*Multidimensional diffusion processes*, Springer, New York, 1979. MR**532498 (81f:60108)****[14]**R. J. Williams,*Brownian motion with polar drift*, Trans. Amer. Math. Soc.**292**(1985), 225-246. MR**805961 (87b:60122)****[15]**L. Caffarelli, private communication.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35J25,
35B50,
60J60

Retrieve articles in all journals with MSC: 35J25, 35B50, 60J60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-0968415-9

Keywords:
Dirichlet problem,
maximum principle,
elliptic operator,
radially homogeneous,
diffusion processes,
martingale problem

Article copyright:
© Copyright 1990
American Mathematical Society