Comparison of commuting one-parameter groups of isometries

Authors:
Ola Bratteli, Hideki Kurose and Derek W. Robinson

Journal:
Trans. Amer. Math. Soc. **320** (1990), 677-694

MSC:
Primary 47D03; Secondary 46L40, 46L57

MathSciNet review:
968886

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be two commuting strongly continuous one-parameter groups of isometries on a Banach space with generators and , and analytic elements , respectively. Then it is easy to show that if is relatively bounded by , then , and in this paper we establish the inverse implication for unitary one-parameter groups on Hilbert spaces and for one-parameter groups of -automorphisms of abelian -algebras. It is not known in general whether the inverse implication holds or not, but it does not hold for one-parameter semigroups of contractions.

**[B]**Ola Bratteli,*Derivations, dissipations and group actions on 𝐶*-algebras*, Lecture Notes in Mathematics, vol. 1229, Springer-Verlag, Berlin, 1986. MR**871870****[BGR]**Ola Bratteli, Trond Digernes, Frederick Goodman, and Derek W. Robinson,*Integration in abelian 𝐶*-dynamical systems*, Publ. Res. Inst. Math. Sci.**21**(1985), no. 5, 1001–1030. MR**817155**, 10.2977/prims/1195178793**[BER]**Ola Bratteli, George A. Elliott, and Derek W. Robinson,*The characterization of differential operators by locality: classical flows*, Compositio Math.**58**(1986), no. 3, 279–319. MR**846908****[BGJR]**Ola Bratteli, Frederick M. Goodman, Palle E. T. Jorgensen, and Derek W. Robinson,*The heat semigroup and integrability of Lie algebras*, J. Funct. Anal.**79**(1988), no. 2, 351–397. MR**953908**, 10.1016/0022-1236(88)90018-3**[BR]**Ola Bratteli and Derek W. Robinson,*Operator algebras and quantum-statistical mechanics. II*, Springer-Verlag, New York-Berlin, 1981. Equilibrium states. Models in quantum-statistical mechanics; Texts and Monographs in Physics. MR**611508****[GJ]**Frederick M. Goodman and Palle E. T. Jorgensen,*Lie algebras of unbounded derivations*, J. Funct. Anal.**52**(1983), no. 3, 369–384. MR**712587**, 10.1016/0022-1236(83)90075-7**[K]**Akitaka Kishimoto,*Derivations with a domain condition*, Yokohama Math. J.**32**(1984), no. 1-2, 215–223. MR**772917****[KR]**Akitaka Kishimoto and Derek W. Robinson,*Derivations, dynamical systems, and spectral restrictions*, Math. Scand.**56**(1985), no. 1, 83–95. MR**807505****[N]**Edward Nelson,*Analytic vectors*, Ann. of Math. (2)**70**(1959), 572–615. MR**0107176****[O]**Donald Ornstein,*A non-equality for differential operators in the 𝐿₁ norm.*, Arch. Rational Mech. Anal.**11**(1962), 40–49. MR**0149331****[R1]**Derek W. Robinson,*The differential and integral structure of representations of Lie groups*, J. Operator Theory**19**(1988), no. 1, 95–128. MR**950828****[R2]**Derek W. Robinson,*Lie groups and Lipschitz spaces*, Duke Math. J.**57**(1988), no. 2, 357–395. MR**962512**, 10.1215/S0012-7094-88-05717-1**[Y]**Kôsaku Yosida,*Functional analysis*, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980. MR**617913**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47D03,
46L40,
46L57

Retrieve articles in all journals with MSC: 47D03, 46L40, 46L57

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-0968886-8

Article copyright:
© Copyright 1990
American Mathematical Society