Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Jacobian module of a Lie algebra


Authors: J. P. Brennan, M. V. Pinto and W. V. Vasconcelos
Journal: Trans. Amer. Math. Soc. 321 (1990), 183-196
MSC: Primary 13H10; Secondary 13C05, 13C15
DOI: https://doi.org/10.1090/S0002-9947-1990-0958883-0
MathSciNet review: 958883
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: There is a natural way to associate to the commuting variety $ C(A)$ of an algebra $ A$ a module over a polynomial ring. It serves as a vehicle to study the arithmetical properties of $ C(A)$, particularly Cohen-Macaulayness. The focus here is on Lie algebras and some of their representations.


References [Enhancements On Off] (What's this?)

  • [1] L. Avramov, Complete intersections and symmetric algebras, J. Algebra 73 (1980), 249-280. MR 641643 (83e:13024)
  • [2] N. Bourbaki, Groupes et algèbres de Lie, Chapitres VII-VIII, Hermann, Paris, 1975. MR 0453824 (56:12077)
  • [3] D. Buchsbaum and D. Eisenbud, What makes a complex exact? J. Algebra 25 (1973), 259-268. MR 0314819 (47:3369)
  • [4] J. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London 269 (1962), 188-204. MR 0142592 (26:161)
  • [5] F. R. Gantmacher, Applications of the theory of matrices, Interscience, New York, 1959. MR 0107648 (21:6372b)
  • [6] M. Gerstenhaber, On dominance and varieties of commuting matrices, Ann. of Math. 73 (1961), 324-348. MR 0132079 (24:A1926)
  • [7] R. M. Guralnick, A note on pairs of matrices with rank one commutators, Linear and Multilinear Algebra 8 (1979), 97-99. MR 552353 (80k:15002)
  • [8] K. Hulek, A remark on certain matrix varieties, Linear and Multilinear Algebra 10 (1981), 169-172. MR 630145 (83a:14040)
  • [9] J. Herzog, A. Simis and W. V. Vasconcelos, On the arithmetic and homology of algebras of linear type, Trans. Amer. Math. Soc. 283 (1984), 661-683. MR 737891 (86a:13015)
  • [10] C. Huneke, On the symmetric algebra of a module, J. Algebra 69 (1981), 113-119. MR 613861 (82d:13016)
  • [11] C. Huneke and M. E. Rossi, The dimension and components of symmetric algebras, J. Algebra 98 (1986), 200-210. MR 825143 (87d:13010)
  • [12] N. Jacobson, Lie algebras, Interscience, New York, 1962. MR 0143793 (26:1345)
  • [13] T. Józefiak, Ideals generated by the minors of a symmetric matrix, Comment. Math. Helv. 53 (1978), 595-607. MR 511849 (80g:14041)
  • [14] H. Kleppe and D. Laksov, The algebraic structure and deformation of Pfaffian schemes, J. Algebra 64 (1980), 167-189. MR 575789 (82b:14027)
  • [15] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, 1986. MR 879273 (88h:13001)
  • [16] T. Motzkin and O. Taussky, Pairs of matrices with property $ L$. II, Trans. Amer. Math. Soc. 80 (1955), 387-401. MR 0086781 (19:242c)
  • [17] M. Nagata, Local rings, Interscience, New York, 1962. MR 0155856 (27:5790)
  • [18] M. G. Neubauer, The variety of pairs of matrices with $ {\operatorname{rank(}}AB - BA) \leq 1$, Proc. Amer. Math. Soc. 105 (1989), 787-792. MR 931743 (89h:14001)
  • [19] R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math. 38 (1979), 311-327. MR 535074 (80c:17009)
  • [20] P. Samuel, Anneaux gradués factoriels et modules réflexifs, Bull. Soc. Math. France 92 (1964), 237-249. MR 0186702 (32:4160)
  • [21] A. Simis and W. V. Vasconcelos, On the dimension and integrality of symmetric algebras, Math. Z. 177 (1981), 341-358. MR 618200 (82i:13017)
  • [22] -, Krull dimension and integrality of symmetric algebras, Manuscripta Math. 61 (1988), 63-78. MR 939141 (89e:13011)
  • [2] N. Bourbaki, Groupes et algèbres de Lie, Chapitres VII-VIII, Hermann, Paris, 1975. MR 0453824 (56:12077)
  • [3] D. Buchsbaum and D. Eisenbud, What makes a complex exact? J. Algebra 25 (1973), 259-268. MR 0314819 (47:3369)
  • [4] J. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London 269 (1962), 188-204. MR 0142592 (26:161)
  • [5] F. R. Gantmacher, Applications of the theory of matrices, Interscience, New York, 1959. MR 0107648 (21:6372b)
  • [6] M. Gerstenhaber, On dominance and varieties of commuting matrices, Ann. of Math. 73 (1961), 324-348. MR 0132079 (24:A1926)
  • [7] R. M. Guralnick, A note on pairs of matrices with rank one commutators, Linear and Multilinear Algebra 8 (1979), 97-99. MR 552353 (80k:15002)
  • [8] K. Hulek, A remark on certain matrix varieties, Linear and Multilinear Algebra 10 (1981), 169-172. MR 630145 (83a:14040)
  • [9] J. Herzog, A. Simis and W. V. Vasconcelos, On the arithmetic and homology of algebras of linear type, Trans. Amer. Math. Soc. 283 (1984), 661-683. MR 737891 (86a:13015)
  • [10] C. Huneke, On the symmetric algebra of a module, J. Algebra 69 (1981), 113-119. MR 613861 (82d:13016)
  • [11] C. Huneke and M. E. Rossi, The dimension and components of symmetric algebras, J. Algebra 98 (1986), 200-210. MR 825143 (87d:13010)
  • [12] N. Jacobson, Lie algebras, Interscience, New York, 1962. MR 0143793 (26:1345)
  • [13] T. Józefiak, Ideals generated by the minors of a symmetric matrix, Comment. Math. Helv. 53 (1978), 595-607. MR 511849 (80g:14041)
  • [14] H. Kleppe and D. Laksov, The algebraic structure and deformation of Pfaffian schemes, J. Algebra 64 (1980), 167-189. MR 575789 (82b:14027)
  • [15] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, 1986. MR 879273 (88h:13001)
  • [16] T. Motzkin and O. Taussky, Pairs of matrices with property $ L$. II, Trans. Amer. Math. Soc. 80 (1955), 387-401. MR 0086781 (19:242c)
  • [17] M. Nagata, Local rings, Interscience, New York, 1962. MR 0155856 (27:5790)
  • [18] M. G. Neubauer, The variety of pairs of matrices with $ {\operatorname{rank(}}AB - BA) \leq 1$, Proc. Amer. Math. Soc. 105 (1989), 787-792. MR 931743 (89h:14001)
  • [19] R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math. 38 (1979), 311-327. MR 535074 (80c:17009)
  • [20] P. Samuel, Anneaux gradués factoriels et modules réflexifs, Bull. Soc. Math. France 92 (1964), 237-249. MR 0186702 (32:4160)
  • [21] A. Simis and W. V. Vasconcelos, On the dimension and integrality of symmetric algebras, Math. Z. 177 (1981), 341-358. MR 618200 (82i:13017)
  • [22] -, Krull dimension and integrality of symmetric algebras, Manuscripta Math. 61 (1988), 63-78. MR 939141 (89e:13011)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13H10, 13C05, 13C15

Retrieve articles in all journals with MSC: 13H10, 13C05, 13C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0958883-0
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society