Jacobi polynomials as generalized Faber polynomials
Author:
Ahmed I. Zayed
Journal:
Trans. Amer. Math. Soc. 321 (1990), 363378
MSC:
Primary 33A65; Secondary 30C20
MathSciNet review:
965745
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be an open bounded subset of the complex plane with closure whose complement is a simply connected domain on the Riemann sphere. map the domain onetoone conformally onto the domain such that . Let , be analytic in the domain with . Let , be analytic in and analytically continuable to any point outside along any path not passing through the points . The generalized Faber polynomials of are defined by . The aim of this paper is to show that (1) if the Jacobi polynomials are generalized Faber polynomials of any region , then it must be the elliptic region (2) the only Jacobi polynomials that can be classified as generalized Faber polynomials are the Tchebycheff polynomials of the first kind, some normalized Gegenbauer polynomials, some normalized Jacobi polynomials of type , and there are no others, no matter how one normalizes them; (3) the Hermite and Laguerre polynomials cannot be generalized Faber polynomials of any region.
 [1]
Richard
Askey, Orthogonal polynomials and special functions, Society
for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. MR 0481145
(58 #1288)
 [2]
G. Faber, Über polynomische Entwicklungen, Math. Ann. 57 (1903), 389408; 64 (1907), 116135.
 [3]
Ya. L. Geronimus, Polynomials, orthogonal on a a circle and on an interval, Fizmatgiz, Moscow, 1958.
 [4]
R.
P. Gilbert, Integral operator methods in biaxially symmetric
potential theory, Contributions to Differential Equations
2 (1963), 441–456 (1963). MR 0156998
(28 #239)
 [5]
R.
P. Gilbert, Bergman’s integral operator method in generalized
axially symmetric potential theory, J. Mathematical Phys.
5 (1964), 983–997. MR 0165131
(29 #2420)
 [6]
Zeev
Nehari, On the singularities of Legendre expansions, J.
Rational Mech. Anal. 5 (1956), 987–992. MR 0080747
(18,293d)
 [7]
V. J. Smirnov and N. Lebedev, Functions of a complex variable, M. I. T. Press, Cambridge, Mass., 1968.
 [8]
H. Srivatstave and H. Manocha, A treatise on generating functions, Ellis Horwood, West Sussex, England, 1984.
 [9]
P.
K. Suetin, The basic porperties of Faber polynomials, Uspehi
Mat. Nauk 19 (1964), no. 4 (118), 125–154
(Russian). MR
0168773 (29 #6029)
 [10]
P.
K. Suetin, Fundamental properties of polynomials orthogonal on a
contour, Uspehi Mat. Nauk 21 (1966), no. 2
(128), 41–88 (Russian). MR 0198111
(33 #6270)
 [11]
P.
K. Suetin, Polynomials orthogonal over a region and Bieberbach
polynomials, American Mathematical Society, Providence, R.I., 1974.
Translated from the Russian by R. P. Boas. MR 0463793
(57 #3732b)
 [12]
G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1975.
 [13]
A.
Zayed, M.
Freund, and E.
Görlich, A theorem of Nehari revisited, Complex Variables
Theory Appl. 10 (1988), no. 1, 11–22. MR 946095
(89g:30006)
 [1]
 R. Askey, Orthogonal polynomials and special functions, Regional Conference Series in Appl. Math., vol. 21, SIAM, 1975. MR 0481145 (58:1288)
 [2]
 G. Faber, Über polynomische Entwicklungen, Math. Ann. 57 (1903), 389408; 64 (1907), 116135.
 [3]
 Ya. L. Geronimus, Polynomials, orthogonal on a a circle and on an interval, Fizmatgiz, Moscow, 1958.
 [4]
 R. Gilbert, Integral operator methods in biaxially symmetric potential theory, Contrib. Differential Equations 2 (1963), 441456. MR 0156998 (28:239)
 [5]
 , Bergman's integral operator method in generalized axially symmetric potential theory, J. Math. Phys. 5 (1964), 983997. MR 0165131 (29:2420)
 [6]
 Z. Nehari, On the singularities of Legendre expansions, Indiana Math. J. 5 (1956), 987992. MR 0080747 (18:293d)
 [7]
 V. J. Smirnov and N. Lebedev, Functions of a complex variable, M. I. T. Press, Cambridge, Mass., 1968.
 [8]
 H. Srivatstave and H. Manocha, A treatise on generating functions, Ellis Horwood, West Sussex, England, 1984.
 [9]
 P. Suetin, The basic properties of Faber polynomials, Uspekhi Mat. Nauk 19 (1964), No.4, 125154; Russian Math. Surveys 19 (1964), No.4, 121149. MR 0168773 (29:6029)
 [10]
 , Fundamental properties of polynomials orthogonal on a contour, Usepkhi Mat. Nauk 21 (1966), No.2 (128), 4188; Russian Math. Surveys 21 (1966), No.2, 3583. MR 0198111 (33:6270)
 [11]
 , Polynomials orthogonal over a region and Bieberbach polynomials, Proc. Steklov Inst. Math., No. 100 (1971); English transl., Amer. Math. Soc., Providence, R. I., 1974. MR 0463793 (57:3732b)
 [12]
 G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1975.
 [13]
 A. Zayed, M. Freund and E. Görlich, A theorem of Nehari revisted, Complex Variables Theory Appl. 10 (1988), 1122. MR 946095 (89g:30006)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
33A65,
30C20
Retrieve articles in all journals
with MSC:
33A65,
30C20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947199009657451
PII:
S 00029947(1990)09657451
Keywords:
Jacobi polynomials,
Faber polynomials
Article copyright:
© Copyright 1990
American Mathematical Society
