Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The nonstandard treatment of Hilbert's fifth problem


Author: Joram Hirschfeld
Journal: Trans. Amer. Math. Soc. 321 (1990), 379-400
MSC: Primary 22E15; Secondary 03H05, 22D05, 46Q05
DOI: https://doi.org/10.1090/S0002-9947-1990-0967314-6
MathSciNet review: 967314
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a nonstandard proof that every locally Euclidean group is a Lie group. The heart of the proof is a strong nonstandard variant of Gleason's lemma for a class of groups that includes all locally Euclidean groups.


References [Enhancements On Off] (What's this?)

  • [1] M. Bate, Non standard analysis of Lie groups, Thesis for the degree of M. Phil., Chelsea College.
  • [2] J. Bell and M. Machover, A course in mathematical logic, North-Holland, Amsterdam, 1977. MR 0472455 (57:12155)
  • [3] I. Kaplansky, Lie algebras and locally compact groups, University of Chicago Press, 1964. MR 1324106 (96a:22008)
  • [4] J. L. Kelley and I. Namioka, Linear topological spaces, Van Nostrand, New York, 1963. MR 0166578 (29:3851)
  • [5] D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955. MR 0073104 (17:383b)
  • [6] R. Parikh, A nonstandard theory of topological groups, Applications of Model Theory to Algebra, Analysis and Probability (W. A. J. Luxemburg, eds.), Holt, Rinehart & Winston, New York, 1969, pp. 279-184. MR 0239964 (39:1318)
  • [7] A. Robinson, Nonstandard analysis, North-Holland, Amsterdam, 1966. MR 0205854 (34:5680)
  • [8] M. Singer, One parameter subgroups and nonstandard analysis, Manuscripta Math. 18 (1976), 1-13. MR 0396840 (53:700)
  • [9] L. Van Der Dries, Unpublished notes, 1981.
  • [10] D. T. Yang, Hilbert's fifth problem and related problems in transformation groups, Proc. Sympos. Pure Math., vol. 28, Amer. Math. Soc., Providence, R.I., 1976, pp. 142-146.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E15, 03H05, 22D05, 46Q05

Retrieve articles in all journals with MSC: 22E15, 03H05, 22D05, 46Q05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0967314-6
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society