Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Continuous spatial semigroups of $ *$-endomorphisms of $ {\germ B}({\germ H})$


Authors: Robert T. Powers and Geoffrey Price
Journal: Trans. Amer. Math. Soc. 321 (1990), 347-361
MSC: Primary 47D25; Secondary 46L99, 47D05
DOI: https://doi.org/10.1090/S0002-9947-1990-0974524-0
MathSciNet review: 974524
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: To each continuous semigroup of $ * $-endomorphisms $ \alpha $ of $ \mathfrak{B}\left( \mathfrak{H} \right)$ with an intertwining semigroup of isometries there is associated a $ * $-representation $ \pi $ of the domain $ \mathfrak{O}(\delta )$ of the generator of $ \alpha $. It is shown that the Arveson index $ {d_ * }(\alpha )$ is the number of times the representation $ \pi $ contains the identity representation of $ \mathfrak{O}(\delta )$. This result is obtained from an analysis of the relation between two semigroups of isometries, $ U$ and $ S$, satisfying the condition $ S{(t)^*}U(t) = {e^{ - \lambda t}}I$ for $ t \geq 0$ and $ \lambda > 0$.


References [Enhancements On Off] (What's this?)

  • [A1] W. B. Arveson, An addition formula for the index of semigroups of endomorphisms of $ \mathfrak{B}\left( \mathfrak{H} \right)$, Pacific J. Math. 137 (1989), 19-36. MR 983326 (90c:47074)
  • [A2] W. B. Arveson, Continuous analogues of Fock space, Mem. Amer. Math. Soc. (to appear). MR 987590 (90f:47061)
  • [BHR] O. Bratteli, R. H. Herman, and D. W. Robinson, Perturbations of flows on Banach spaces and operator algebras, Comm. Math. Phys. 59 (1978), 167-178. MR 491612 (80a:46038)
  • [D1] R. G. Douglas, On the $ {C^*}$-algebra of a one-parameter semigroup of isometries, Acta Math. 128 (1972), 143-151. MR 0394296 (52:15099)
  • [DS] N. Dunford and J. T. Schwartz, Linear operators, Interscience, New York, 1958; reprinted 1971.
  • [P1] R. T. Powers, An index theory for semigroups of $ * $-endomorphisms of $ \mathfrak{B}\left( \mathfrak{H} \right)$ and type $ {\text{I}}{{\text{I}}_1}$ factors, Canad. J. Math. 40 (1988), 86-114. MR 928215 (89f:46116)
  • [P2] -, A non-spatial continuous semigroup of $ * $-endomorphisms of $ \mathfrak{B}\left( \mathfrak{H} \right)$, Publ. Res. Inst. Math. Sci. Kyoto Univ. 23 (1987), 1053-1069. MR 935715 (89f:46118)
  • [PR] R. T. Powers and D. W. Robinson, An index for continuous semigroups of $ * $-endomorphisms of $ \mathfrak{B}\left( \mathfrak{H} \right)$, J. Funct. Anal. (to appear). MR 999489 (90f:46107)
  • [RS] M. Reed and B. Simon, Methods of modern mathematical physics, Academic Press, New York, 1972. MR 0493419 (58:12429a)
  • [RN] F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York, 1955. MR 0071727 (17:175i)
  • [R1] D. W. Robinson, The approximation of flows, J. Funct. Anal. 24 (1977), 280-290. MR 0440420 (55:13295)
  • [Sz] B. Sz.-Nagy, Isometric flows in Hilbert space, Proc. Cambridge Phil. Soc. 60 (1964), 45-49. MR 0159231 (28:2448)
  • [Y1] K. Yosida, Functional analysis, Springer-Verlag, New York, 1974. MR 0350358 (50:2851)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47D25, 46L99, 47D05

Retrieve articles in all journals with MSC: 47D25, 46L99, 47D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0974524-0
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society