Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Complex interpolation for normed and quasi-normed spaces in several dimensions. III. Regularity results for harmonic interpolation


Author: Zbigniew Slodkowski
Journal: Trans. Amer. Math. Soc. 321 (1990), 305-332
MSC: Primary 46M35; Secondary 32F05, 46B70
DOI: https://doi.org/10.1090/S0002-9947-1990-0991968-1
MathSciNet review: 991968
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The paper continues the study of one of the complex interpolation methods for families of finite-dimensional normed spaces $ {\{ {{\mathbf{C}}^n},\vert\vert \cdot \vert{\vert _z}\} _{z \in G}}$, where $ G$ is open and bounded in $ {{\mathbf{C}}^k}$. The main result asserts that (under a mild assumption on the datum) the norm function $ (z,w) \to \vert\vert w\vert\vert _z^2$ belongs to some anisotropic Sobolew class and is characterized by a nonlinear PDE of second order. The proof uses the duality theorem for the harmonic interpolation method (obtained earlier by the author). A new, simpler proof of this duality relation is also presented in the paper.


References [Enhancements On Off] (What's this?)

  • [1] E. Asplund, Frechet differentiability of convex functions, Acta Math. 121 (1968), 31-48. MR 0231199 (37:6754)
  • [2] E. Bedford, B. A. Taylor, The Dirichlet problem for a complex Monge-Ampere equation, Invent. Math. 37 (1976), 1-44. MR 0445006 (56:3351)
  • [3] R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher, and G. Weiss, The complex method for interpolation of operators acting on families of Banach spaces, Lecture Notes in Math., vol. 779, Springer-Verlag, Berlin and New York, 1980, pp. 123-153. MR 576042 (81k:46075)
  • [4] -, A theory of complex interpolation for families of Banach spaces, Adv. in Math. 33 (1982), 203-229. MR 648799 (83j:46084)
  • [5] R. Coifman and S. Semmes, Interpolation of Banach spaces and nonlinear Dirichlet problems, Lecture Notes in Math., vol. 1302, Springer-Verlag, Berlin and New York, 1988.
  • [6] M. M. Day, Normed linear spaces, Springer-Verlag, New York, 1973. MR 0344849 (49:9588)
  • [7] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Vol. I, Academic Press, London, 1976. MR 0460672 (57:665)
  • [8] E. Hewitt and K. Stromberg, Real and abstract analysis, Springer-Verlag, New York, 1969. MR 0367121 (51:3363)
  • [9] C. O. Kiselman, The partial Legendre transformation for plurisubharmonic functions, Invent. Math. 49 (1978), 137-148. MR 511187 (80d:32014)
  • [10] V. G. Mazja, Sobolew spaces, Springer-Verlag, Berlin, 1985.
  • [11] R. Rochberg, The work of Coifman and Semmes on complex interpolation, several complex variables and PDE's, U.S.-Swedish Seminar on Function Spaces and Applications, Lund, June 1986 (to appear). MR 942258 (90f:46117)
  • [12] -, Interpolation of Banach spaces and negatively curved vector bundles, Pacific J. Math. 110 (1984), 335-376. MR 726495 (85m:46077)
  • [13] R. Rochberg and G. Weiss, Some topics in complex interpolation theory, Topics in Modern Harmonic Analysis, Istituto Nazionale di Alta Matematica, Rome, 1983, pp. 769-818. MR 748883 (86a:46100)
  • [14a] Z. Slodkowski, Analytic multifunctions and their applications, talk at the Banach Space Conference, Kent, August 1985.
  • [14b] -, Complex interpolation families of normed spaces over several-dimensional parameter space, Abstracts of the Special Session in Several Complex Variables, 826th Meeting of the AMS, Indianapolis, April 1986.
  • [14c] -, On complex interpolation methods for families of normed spaces over domains in $ {C^k}$, talk at the International Conference on Harmonic Measure, Toledo, Ohio, July 1986.
  • [15] -, Local maximum property and $ q$-plurisubharmonic functions in uniform algebras, J. Math. Anal. Appl. 115 (1986), 105-130. MR 835588 (87j:32050)
  • [16] -, Pseudoconvex classes of functions. I. Pseudoconcave and pseudoconvex sets, Pacific J. Math. 134 (1988), 343-376. MR 961240 (89m:32031)
  • [17] -, Complex interpolation of normed and quasinormed spaces. I, Trans. Amer. Math. Soc. 308 (1988), 685-711. MR 951623 (89j:32024)
  • [18] -, Pseudoconvex classes of functions. III. Characterization of dual pseudoconvex classes on complex homogeneous spaces, Trans. Amer. Math. Soc. 309 (1988), 165-189. MR 957066 (89m:32032)
  • [19] -, Complex interpolation of normed and quasinormed spaces in several dimensions. II. Properties of harmonic interpolation, Trans. Amer. Math. Soc. 317 (1990), 255-285. MR 949900 (91e:46107)
  • [20] A. I. Vol'pert, The spaces BV and quasilinear equations, Math. USSR-Sb. 2 (1967), 225-267. MR 0216338 (35:7172)
  • [21] S. Kobayashi, Negative vector bundles and complex Finsler structures, Nagoya Math. J. 57 (1975), 153-166. MR 0377126 (51:13299)
  • [22] R. Coifman and S. Semmes, Interpolation of Banach spaces, Perron processes and Yang-Mills.
  • [23] S. Semmes, Interpolation of Banach spaces, differential geometry and differential equations, preprint. MR 1009123 (91e:46105)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46M35, 32F05, 46B70

Retrieve articles in all journals with MSC: 46M35, 32F05, 46B70


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0991968-1
Keywords: Plurisubharmonic functions, Hessian form, weak derivative, dual norm, interpolation family, harmonic multifunction
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society