Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A topological persistence theorem for normally hyperbolic manifolds via the Conley index

Author: Andreas Floer
Journal: Trans. Amer. Math. Soc. 321 (1990), 647-657
MSC: Primary 58F15; Secondary 58F30
MathSciNet review: 968418
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the cohomology ring of a normally hyperbolic manifold of a diffeomorphism $ f$ persists under perturbation of $ f$. We do not make any quantitative assumptions on the expansion and contraction rates of $ Df$ on the normal and the tangent bundles of $ N$.

References [Enhancements On Off] (What's this?)

  • [1] Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133
  • [2] Neil Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971/1972), 193–226. MR 0287106
  • [3] Andreas Floer, A refinement of the Conley index and an application to the stability of hyperbolic invariant sets, Ergodic Theory Dynam. Systems 7 (1987), no. 1, 93–103. MR 886372, 10.1017/S0143385700003825
  • [4] Jack K. Hale, Ordinary differential equations, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1969. Pure and Applied Mathematics, Vol. XXI. MR 0419901
  • [5] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
  • [6] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173
  • [7] Jiří Jarník and Jaroslav Kurzweil, On invariant sets and invariant manifolds of differential systems, J. Differential Equations 6 (1969), 247–263. MR 0249729
  • [8] J. McCarthy, Stability of invariant manifolds, Bull. Amer. Math. Soc. 61 (1955), 149-150.
  • [9] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F15, 58F30

Retrieve articles in all journals with MSC: 58F15, 58F30

Additional Information

Article copyright: © Copyright 1990 American Mathematical Society